Introducción a la Teoría de Grafos

Flavia Bonomo

fbonomo@dc.uba.ar

2do. Cuatrimestre 2009

Programa

- Introducción a la teoría de grafos
- Problemas de camino mínimo
- Problemas de flujo máximo
- Programación lineal

Unidad 1: Introducción a la teoría de grafos

Definiciones básicas

Definiciones

Familias de grafos

Conexión

Árboles

Definiciones

Propiedades

Algoritmos

Circuitos, planaridad y coloreo

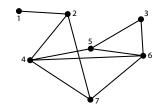
Planaridad y coloreo

C. Eulerianos

C. Hamiltonianos

Definiciones básicas

- Un grafo G está formado por un par (V(G), E(G)):
 - V(G) es un conjunto finito, el conjunto de vértices de G, y
 - E(G) es un conjunto de pares no ordenados de vértices distintos de G, llamados aristas, que se notan por ij o (i, j).
- Notación:
 - $n = n_G = |V(G)| \text{ y } m = m_G = |E(G)|;$
 - $V_G = V(G), E_G = E(G).$
- Un grafo se dice trivial si tiene un solo vértice.



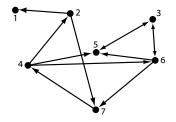
$$V(G) = \{1, 2, 3, 4, 5, 6, 7\}$$

$$E(G) = \{(1, 2), (2, 4), (2, 7), (3, 5), (3, 6), (4, 5), (4, 6), (4, 7), (5, 6), (6, 7)\}$$

$$n = 7; m = 10.$$

Definiciones básicas

 Decimos que G es un digrafo, o un grafo dirigido, si las aristas están dadas por un conjunto de pares ordenados de vértices.



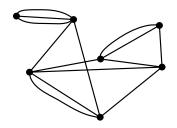
$$V(G) = \{1, 2, 3, 4, 5, 6, 7\}$$

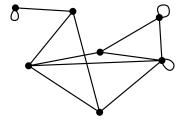
$$E(G) = \{(2, 1), (4, 2), (2, 7), (3, 5), (5, 3), (3, 6), (6, 3), (4, 5), (4, 6), (7, 4), (6, 5), (6, 7)\}$$

$$n = 7; m = 12.$$

Definiciones básicas

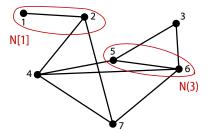
• Decimos que G es un multigrafo si se permite que entre un mismo par de vértices se trace más de una arista, y un pseudografo si se permiten aristas de tipo (v, v) (loops).



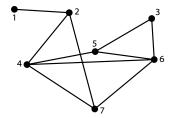


Vecindarios

- Un vértice v es adyacente a otro vértice w en G si (v, w) ∈ E(G). Decimos que v y w son los extremos de la arista.
- El vecindario de un vértice v en un grafo G es el conjunto N_G(v) que consiste de todos los vértices adyacentes a v. El vecindario cerrado de v es N_G[v] = N_G(v) ∪ {v}.
- Notación: si queda claro por contexto, se usa N(v) y N[v].



- El grado de un vértice v en G es la cardinalidad del conjunto $N_G(v)$ y se nota $d_G(v)$. Si no hay ambigüedad, se usa d(v).
- Dado un grafo G, notamos $\delta(G)$ al grado mínimo y $\Delta(G)$ al grado máximo entre los vértices de G.

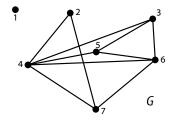


$$d(2) = 3$$

$$\delta(G) = 1$$

$$\Delta(G)=4$$

- Un vértice v es aislado cuando $N(v) = \emptyset$, o equivalentemente d(v) = 0.
- Un vértice v es universal cuando $N(v) = V(G) \{v\}$, o equivalentemente d(v) = n 1.

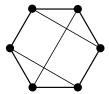


El vértice 1 es aislado en G.

El vértice 4 es universal en $G - \{1\}$.

Si *G* es no trivial y tiene un vértice aislado no puede tener también uno universal.

- Un grafo se dice regular si todos sus vértices tienen el mismo grado.
- Un grafo se dice cúbico si todos sus vértices tienen grado tres.

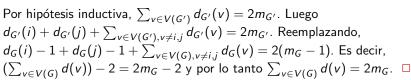


Teorema

$$\sum_{v \in V(G)} d(v) = 2m.$$

Demo: Por inducción en m_G . Si $m_G = 0$, entonces $d_G(v) = 0$ para todo $v \in V(G)$, y por lo tanto $0 = \sum_{v \in V(G)} d(v) = 2m$. Supongamos $m_G > 0$, y consideremos G' obtenido a partir de G sacando una arista cualquiera (i,j). Entonces:

- $m_{G'} = m_G 1$
- $d_{G'}(i) = d_G(i) 1$ y $d_{G'}(j) = d_G(j) 1$
- $d_{G'}(v) = d_G(v) \text{ si } v \neq i, j$



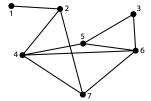
Corolario

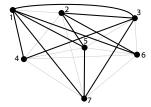
Todo grafo cúbico tiene un número par de vértices.

Demo:
$$2m = \sum_{v \in V(G)} d(v) = 3n$$
. Luego $2 \mid n$.

Complemento

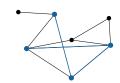
• El complemento de un grafo G, denotado por \overline{G} , es el grafo que tiene el mismo conjunto de vértices de G y tal que dos vértices distintos son adyacentes en \overline{G} si y sólo si no son adyacentes en G.





Subgrafos

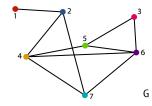
- Un grafo H es un subgrafo de un grafo G si $V(H) \subseteq V(G)$ y $E(H) \subseteq E(G)$.
- Si V(H) = V(G), decimos que H es un subgrafo generador de G.
- Dado un conjunto de vértices X ⊆ V(G), el subgrafo de G inducido por X es el subgrafo H de G tal que V(H) = X y E(H) es el conjunto de aristas de G que tiene ambos extremos en X.
- Notación: Si $v \in V(G)$, G v denota el subgrafo de G inducido por $V(G) \{v\}$.





Isomorfismo

- Dos grafos G y H son isomorfos si existe una biyección entre V(G) y V(H) que conserva las adyacencias. En este caso, notamos G = H.
- Más formalmente, G y H son isomorfos si existe $f: V(G) \rightarrow V(H)$ biyectiva tal que $(v, w) \in E(G)$ si y sólo si $(f(v), f(w)) \in E(H)$.
- El isomorfismo es una relación de equivalencia.





$$f(1) = 7$$

 $f(2) = 5$

$$f(3) = 3$$

$$f(4) = 6$$

$$f(5) = 4$$

$$f(6) = 2$$

$$f(7) = 1$$

Grafos completos

- Un grafo G es completo si cualquier par de vértices distintos de G son adyacentes. Llamamos K_n al grafo completo con n vértices.
- K₃ se llama también triángulo.
- ¿Cuánto valen m_{K_n} , $\delta(K_n)$ y $\Delta(K_n)$?

Caminos

- Un camino en un grafo G es una secuencia de vértices distintos $P = v_1, v_2, \ldots, v_k$, donde $(v_i, v_{i+1}) \in E(G)$, $i = 1, \ldots, k - 1$.
- Una cuerda en P es una arista que une dos vértices no consecutivos de P.
- Un camino inducido es un camino sin cuerdas. Denotamos por P_k al camino inducido de k vértices.
- ¿Cuánto valen m_{P_k} , $\delta(P_k)$ y $\Delta(P_k)$?

Circuitos y ciclos

- Un circuito en un grafo G es una secuencia de vértices $C = v_1, v_2, \ldots, v_k$, no necesariamente distintos, donde $v_1 = v_k$ y $(v_i, v_{i+1}) \in E(G)$, $i = 1, \ldots, k-1$.
- Si $k \ge 3$ y v_1, \ldots, v_{k-1} son distintos, C se llama ciclo.
- Una cuerda en C es cualquier cuerda del camino v_1, v_2, \ldots, v_k excepto (v_1, v_k) .
- Un ciclo es un ciclo inducido si no posee cuerdas. Llamamos
 C_k al ciclo inducido de k vértices.
- ¿Cuánto valen m_{C_k} , $\delta(C_k)$ y $\Delta(C_k)$?

Grafos bipartitos completos

- Un grafo G es bipartito si $V(G) = V_1 \cup V_2$, con V_1 y V_2 disjuntos, y toda arista tiene un extremo en V_1 y otro en V_2 .
- Un grafo G es bipartito completo si además todo vértice de V_1 es adyacente a todo vértice de V_2 . Llamamos $K_{r,s}$ al grafo bipartito completo tal que $|V_1|=r$ y $|V_2|=s$.
- ¿Cuánto valen $n_{K_{r,s}}$, $m_{K_{r,s}}$, $\delta(K_{r,s})$ y $\Delta(K_{r,s})$?

Teorema

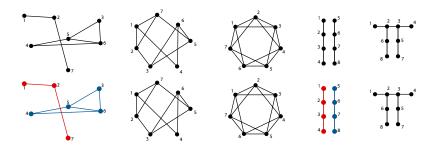
Si un grafo tiene 6 o más vértices, entonces el grafo o su complemento tienen un triángulo.

Demo: Sea $v \in V(G)$. Como $d_G(v) + d_{\bar{G}}(v) = n - 1 \ge 5$, podemos asumir s.p.g. que $d_G(v) \ge 3$.

Si hay dos vértices adyacentes w y z en $N_G(v)$, entonces v, w, z forman un triángulo. Si no hay dos vértices adyacentes en $N_G(v)$, entonces $N_G(v)$ induce un subgrafo completo en \overline{G} , y como $|N_G(v)| \geq 3$, \overline{G} contiene un triángulo.

- Un grafo G es conexo si para todo par de vértices distintos v y w de G existe un camino de v a w.
- ¿Cuáles de los siguientes grafos son conexos?

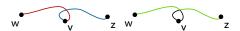
- Un conjunto S es maximal (minimal) en relación a una determinada propiedad P si S satisface P, y todo conjunto S' que contiene propiamente a S (que está contenido propiamente en S) no satisface P.
- Una componente conexa de un grafo es un subgrafo conexo maximal.
- ¿Cuáles son las componentes conexas de estos grafos?



Observaciones

- 1. Todo vértice de un grafo pertenece a alguna componente conexa.
- 2. Un grafo es conexo si y sólo si tiene una sola componente conexa.
- 3. Dos componentes conexas distintas de un grafo son disjuntas.

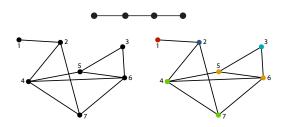
Demo de 3.: Supongamos que $v \in G_1 \cap G_2$. Entonces para todo par de vértices w, z de $G_1 \cup G_2$ existe un camino de w a v y un camino de v a z(de longitud cero si alguno es v).



De la union de esos dos caminos se puede extraer un camino simple de w a z. Por lo tanto $G_1 \cup G_2$ es un subgrafo conexo, pero como G_1 y G_2 eran maximales, resulta $G_1 = G_2 = G_1 \cup G_2$.

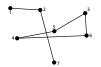
Distancia

- La longitud de un camino se mide por la cantidad de aristas que lo componen.
- La distancia entre dos vértices v y w en G es la longitud del camino más corto entre v y w y se nota $d_G(v, w)$. Si el contexto no es ambiguo, se abrevia d(v, w).
 - ¿Cuál es la distancia entre 1 y 5?
- El disco $D_k(v)$ de centro v y radio k ($k \ge 0$) es el conjunto de vértices de G que están a distancia menor o igual que k de v. ¿Cuáles son los discos con centro 1 en este grafo?



Grafos bipartitos

- Un grafo G es bipartito si $V(G) = V_1 \cup V_2$, con V_1 y V_2 disjuntos, y toda arista tiene un extremo en V_1 y otro en V_2 .
- ¿Cuáles de los siguientes grafos son bipartitos?



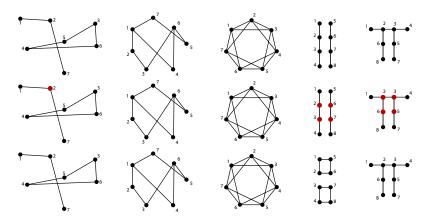
Teorema

Un grafo G es bipartito \Leftrightarrow todos sus circuitos son pares.

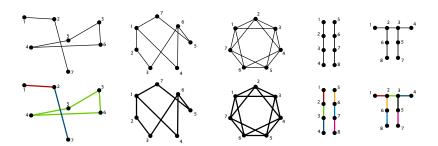
Demo:

- \Rightarrow) Sabemos que $V(G) = V_1 \cup V_2$ y toda arista va de V_1 a V_2 . Sea v_1, v_2, \ldots, v_n un circuito en G. Si $v_1 \in V_1$ entonces los vértices de subíndice par tienen que pertenecer a V_2 y los de subíndice impar a V_1 . Como v_n es adyacente a v_1 , n tiene que ser par.
- \Leftarrow) Sea v en V(G). Definimos V_1 y V_2 como los vértices que están a distancia impar o par de v, respectivamente. Supongamos que no es una bipartición, o sea, existen z y w que están a ambos a distancia par o impar de v y son adyacentes. Como la diferencia entre las distancias es a lo sumo 1, entonces están a la misma distancia. Sea v' el primer vértice en común entre los caminos mínimos de w a v y de z a v. La longitud de los sub-caminos de w a v' y de z a v' tiene que ser la misma. Entonces esos sub-caminos y la arista wz forman un ciclo impar.

- Un punto de corte de un grafo G es un vértice v tal que G − v tiene más componentes conexas que G.
- ¿Qué vértices son puntos de corte en estos grafos?
- Un grafo es biconexo si es conexo y sin puntos de corte.
- ¿Cuáles de estos grafos son biconexos?



- Un bloque o componente biconexa de un grafo es un subgrafo biconexo maximal.
- ¿ Cuáles son los bloques en estos grafos?



Observaciones

- 1. Un grafo es biconexo si y sólo si tiene un solo bloque.
- 2. Dos bloques de un grafo comparten a lo sumo un vértice. En particular, cada arista pertenece a un único bloque.

Sea G conexo y sea v un vértice de G. Son equivalentes:

- 1. El vértice v es un punto de corte de G.
- 2. Existen vértices u y w distintos de v tales que v está en todo camino entre u y w.
- 3. Existe una partición de V-v en U y W tal que para todo u en U y para todo w en W, el punto v está en todo camino entre u y w.

Demo: $1 \Rightarrow 3$) Si v es punto de corte $\Rightarrow G - v$ es disconexo. Sea U una componente conexa de G - v y W los vértices restantes. Sean $u \in U$ y $w \in W$; como están en componentes conexas distintas de G - v, todo camino en G entre ellos contiene a v.

- $3 \Rightarrow 2$) Tomamos u en U y w en W.
- $2 \Rightarrow 1$) Si v está en todo camino de u a w, entonces no existe un camino entre u y w en G v. Por lo tanto G v no es conexo, y v es punto de corte de G.

- Un puente de un grafo G es una arista e tal que G e tiene más componentes conexas que G.
- Sea G conexo, v un punto de corte y e un puente. ¿Puede ser que G - v tenga más de dos componentes conexas? ; Y G - e?
- ¿Existe algún grafo biconexo que tenga un puente?

Rta: Sólo el grafo formado por una única arista. Si e = vw es un puente en G, entonces las componentes conexas de G-eson G_1 y G_2 , donde $v \in G_1$ y $w \in G_2$. Notemos que v es punto de corte en G salvo que $G_1 = \{v\}$ y w es punto de corte en G salvo que $G_2 = \{w\}$. Entonces, si G es biconexo, $V(G) = \{v, w\} \ y \ E(G) = \{e\}.$

Teorema

Sea G conexo y sea e = ij una arista de G. Son equivalentes:

- 1. La arista *e* es un puente de *G*.
- 2. La arista e no está en ningún ciclo de G.
- 3. Existen vértices u y v tales que e está en todo camino entre u y v.

Demo: $1\Rightarrow 2$) Si e está en un ciclo C, entonces C-e es un camino P entre i y j. En cualquier camino entre dos vértices u y v, la arista e podría ser reemplazada por el camino P. Luego e no es puente. $2\Rightarrow 3$) Sean i y j los extremos de e. Si para todo par de vértices u, v existe un camino que los une y no pasa por e, en particular existe un camino P entre i y j que no usa e. Pero entonces $P \cup e$ es un ciclo. $3\Rightarrow 1$) Si e está en todo camino de u a v, entonces no existe un camino entre u y v en G-e. Por lo tanto G-e no es conexo, y e es un puente de G.