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What is a network?

Network: a collection of entities that are interconnected with
links. For example:

people that are friends

computers that are interconnected

web pages that point to each other

proteins that interact

In terms of graph theory, the entities are called vertices and the
links edges.
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What is a complex network?

Large graphs of real life are called complex networks. Some of the
main questions about them are the following:

What are the statistics of real life networks?

Can we explain how the networks were generated?
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Example: the Internet graph
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More examples

Social networks:

networks of acquaintances
collaboration networks
phone-call networks

Technological networks:

the Internet
telephone networks
transportation networks

Biological networks

protein-protein interaction networks
gene regulation networks
the food web
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Foundational bibliography on complex networks

Around 1999...

Watts and Strogatz, “Dynamics and small-world
phenomenon”

Faloutsos, Faloutsos and Faloutsos, “On power-law
relationships of the Internet Topology”

Kleinberg et al., “The Web as a graph”

Barabasi and Albert, “The emergence of scaling in real
networks”
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Some basic definitions: degree distribution

degree d(i) of vertex i : number of
edges incident on i

degree sequence:
[d(1), d(2), d(3), d(4), d(5)] =
[2, 2, 3, 2, 1]

degree distribution:
[(1, 1), (2, 3), (3, 1)]
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Some basic definitions: diameter

diameter: the length of the longest
shortest path between two vertices
of the graph
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Some basic definitions: clustering coefficient

clustering coefficient of vertex i :

if d(i) > 1, is the number of edges
between neighbors of i divided by
d(i)(d(i)− 1)/2
if d(i) ≤ 1 can be defined as 0 or 1

clustering coefficient of vertex 3: 1/6

clustering coefficient of vertex 1: 1
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Characterization of complex networks

Diameter, clustering coefficient, degree distribution.

Betweenness centrality: number of short paths going through
a vertex.

Communities: can one identify cliques within the network?

Correlations between degree and other quantities.

Local motifs: What is the structure of the building blocks of
complex networks?

Motifs: Subgraphs that have a significantly higher density in
the observed network than in the randomizations of the same.

Assortativity: do highly-connected nodes preferentially
connect to other highly-connected nodes?
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Assortativity

A network is said to be assortatively mixed by degree if high
degree vertices tend to connect to other high degree vertices.

A network is disassortatively mixed by degree if high degree
vertices tend to connect to low degree vertices.

Assortative and disassortative scale-free networks.
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Real network properties

Most vertices have only a small number of neighbors (degree),
but there are some vertices with very high degree (power-law
degree distribution)

scale-free networks

If a vertex x is connected to y and z , then y and z are likely
to be connected

high clustering coefficient

Most vertices are just a few edges away on average.

small world networks

Networks from very diverse areas (from internet to biological
networks) have similar properties

Is it possible that there is a unifying underlying generative
process?
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Generating random graphs

Classic graph theory model (Erdős-Renyi)

each edge is generated independently with probability p

Very well studied model but:

most vertices have about the same degree
the probability of two nodes being linked is independent of
whether they share a neighbor
the average paths are short

Real life networks are not “random” in this sense of
randomness.

Can we define a model that generates graphs with statistical
properties similar to those in real life?
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Degree distributions

fk = fraction of nodes with
degree k = probability of a
randomly selected node to
have degree k

Problem: find the
probability distribution that
best fits the observed data.
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Degree distribution

These graphs have the same degree distribution but their diameter,
modularity and robustness are very different.
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Power-law distributions

The degree distributions of most real-life networks follow a
power law

P(k) = Ck−α

there is a non-negligible fraction of nodes that has very high
degree (hubs)
scale-free: no characteristic scale, average is not informative.

In contrast with the random graph model!

Poisson degree distribution

P(k) =
(np)k

k!
e−np

highly concentrated around the mean
the probability of very high degree nodes is exponentially small
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Power-law signature

Power-law distribution gives a line in the log-log plot

α: power-law exponent (typically 2 ≤ α ≤ 3)
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Example: the WWW graph

In-degree distribution: Power-law
distribution with exponent 2.1

Out-degree distribution: Power-law
distribution with exponent 2.7

The fact that the exponent is
greater than 2 implies that the
expected value of the degree is a
constant (not growing with n).

Therefore, the expected number of
edges is linear in the number of
vertices n.
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A random graph example
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Expected degrees

Average degree:

For random graphs: np.
For scale-free graphs, it is constant if α ≥ 2, and it diverges if
α < 2.

Maximum degree:

For random graphs, the maximum degree is highly
concentrated around the average degree.
For scale-free graphs kmax ≈ n1/(α−1).
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Connected components

It is interesting to measure the size and distribution of the
connected components, in particular, is there a giant
component?

Network Resilience: Study how the graph properties change
when performing random or targeted node deletions.
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Motifs

Most networks have the same characteristics with respect to
global measurements... can we say something about the local
structure of the networks?

Motifs: Find small subgraphs that over-represented in the
network.

Finding interesting motifs: Count the frequency of the motifs
of interest and compare against the frequency of the motif in
a random graph with the same number of nodes and the same
degree distribution.
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Randomizing a network by edge swapping

Edge swapping (rewiring) algorithm: Randomly select and
rewire two edges. Repeat many times.

This algorithm maintains the degree distribution. It is used to
compare characteristic measured from a real network with those of
randomized ones with the same degree distribution, for example,
the presence of motifs.
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What is a network model?

Informally, a network model is a process (randomized or
deterministic) for generating a graph

Models of static graphs

input: a set of parameters Π, and the size of the graph n
output: a graph G (Π, n)

Models of evolving graphs

input: a set of parameters Π, and an initial graph G0

output: a graph Gt for each time t
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Graphs with given degree sequences

The configuration model

input: the degree sequence [d1, d2, . . . , dn]
process:

I Create di copies of vertex i
I Take a random matching (pairing) of the copies, and then

there will be one link from i to j for each link from a copy of i
to a copy of j .

I Self-loops and multiple edges are allowed.

Flavia Bonomo Introduction to complex networks



Introduction
Measuring Networks

Networks Models
Some other concepts

Example
Suppose that the degree sequence is

Create multiple copies of the nodes

Pair the nodes uniformly at random and generate the resulting
network
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Graphs with given expected degree sequences

input: the degree sequence [d1, d2, . . . , dn] and the total
number of edges m

process: generate edge (i , j) with probability didj/m

preserves the expected degrees

easier to analyze.
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Preferential Attachment in Networks

First considered by Price (1965) as a model for citation
networks.

each new paper is generated with m citations (mean)
new papers cite previous papers with probability proportional
to their indegree (citations) plus one (to give some chance to
papers with no citations).

Power law with exponent α = 2 + 1/m.

The Barabasi-Albert model is similar and results in power law
with exponent α = 3.
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Small World networks (Watts and Strogatz model, 1998)

Start with a ring, where every vertex is connected to the next
z vertices.

With probability p, rewire two edges (or, add a shortcut to a
uniformly chosen destination).

For 0 < p < 1, we have high clustering coefficient and small
diameter.
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Gossip and Epidemics
Fractal dimension of scale-free networks

Spread in networks

Understanding the spread of viruses (or rumors, information,
failures etc) is one of the driving forces behind network analysis.
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Gossip and Epidemics
Fractal dimension of scale-free networks

Percolation in networks

Site Percolation: Each vertex of the network is randomly set
as occupied or not-occupied. We are interested in measuring
the size of the largest connected component of non-occupied
vertices.

Bond Percolation: Each edge of the network is randomly set
as occupied or not-occupied. We are interested in measuring
the size of the largest component of vertices connected by
non-occupied edges.

Good model for failures or attacks.
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Percolation threshold

How many vertices should be occupied in order for the
network to not have a giant component? (the network does
not percolate).

For scale free graphs of power law exponent less than 3, there
is always a giant component (the network always percolates).

But... if the vertices are removed preferentially (according to
degree), then it is easy to disconnect a scale free graph by
removing a small fraction of the vertices.

Scale-free graphs are resilient to random attacks, but sensitive
to targeted attacks. For random networks there is smaller
difference between the two.
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Fractal dimension of scale-free networks

Fractals look the same on all scales = ‘scale-invariant’.

In a recent work (C. Song, S. Havlin and H. A. Makse, 2005),
the authors identify for some complex networks a power law
relation between the number of boxes needed to cover the
network and the size of the box, which defines a finite fractal
dimension.

A box of size k in a graph is a subset of vertices pairwise at
distance at most k .

We need the minimum number of boxes: NP-hard
optimization problem! (clique covering in G k). They use
some heuristics.
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Box covering of a network
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Fractal networks:

WWW, biological networks.
Are characterized by the relation

NB(`B)/n ∼ `−dB

B

where dB is the fractal dimension and
NB(`B) is the minimum number of boxes
of size `B necessary to cover the
network.
Are disassortative.

Non-Fractal networks:

Internet, social networks (citations,
IMDB), models based on uncorrelated
preferential attachment.
Are assortative.
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How to “zoom out” of a complex network?

Renormalization in Complex Networks: Now, regard each box
as a single vertex and ask what is the degree distribution of the
network of boxes at different scales ?

The scale-free degree distribution is invariant under this
renormalization.

Internet is not fractal, but it is renormalizable.
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Renormalization of the WWW
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