
Advanced Graph Algorithms

Approximation Algorithms

Martin Milanič
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Coping with NP -Hardness

Suppose you need to solve an NP -hard problem X .
Theory says that most likely there is no polynomial-time
algorithm for X .

Are you going to give up?
I Probably yes, if the goal is really to find a polynomial-time

algorithm.
I Probably not, if your job depends on a solution to the

problem.
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Coping with NP -Hardness

A naive approach:
I develop smart strategies of searching through the space of

all possible solutions;
I an optimal solution is always found;
I no guarantee on running time.

Heuristics:
I intuitive algorithms;
I guaranteed to run in polynomial time;
I no guarantee on quality of solution.
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Coping with NP -Hardness

Approximation algorithms:
I guaranteed to run in polynomial time;
I guaranteed to find “high quality” solution, say within 1% /

10% / 50% / a factor of 3 of optimum;

I here we face a difficulty:
need to prove a solution’s value is close to optimum,
without even knowing the optimum value!
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Approximation Algorithms

I The development of approximation algorithms can thus be
seen as one of possible answers to the impossibility of
efficiently solving a number of important NP -hard
optimization problems.
We are therefore satisfied with sufficiently good feasible
solutions, which can be computed fast enough.

I The goal is of course to sacrifice as little as possible on
optimality, while retaining as good time (and space)
complexity of the algorithm as possible.

I The theory of approximation algorithms seeks which
relations between quality of solution and running time can
be obtained for a given problem.
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Approximation Algorithms

We will give an overview of approximation algorithms for
selected graph problems.

Algorithms are typically problem-specific, but some general
features will also be outlined (when applicable).
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Approximation Algorithms

For further reading, there are many possibilities:
I Vazirani, Approximation Algorithms, Springer, 2001,

I Ausiello et al., Complexity and Approximation:
Combinatorial Optimization Problems and their
Approximability Properties, Springer, 2003,

I Hochbaum (ed.), Approximation Algorithms for NP-Hard
Problems, PWS 1997,

I Williamson, Shmoys, The Design of Approximation
Algorithms, Cambridge University Press, 2010,

I and of course research papers.
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Instances of optimization problems

An instance (of an optimization problem) is an ordered triple
(S, f ,opt), where:

I S is an (implicitly given) set of feasible solutions
I f : S → R is the objective function
I opt ∈ {min,max} type of problem: minimization or

maximization

We are looking for

OPT := opt{f (x) | x ∈ S} .
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Instances of optimization problems

Example:
Traveling Salesman:
Input: a distance matrix D = [dij ]

n
i,j=1

dij ≥ 0: length of path from i to j

S = {traveling salesman tours}

tour = π ∈ Sn (π is a cyclic permutation of the set {1, . . . ,n}, a
permutation with a unique cycle)
(Equivalently: a Hamiltonian cycle in the complete graph.)

π = (i1 i2 · · · in)
f (π) =

∑n−1
k=1 dik ik+1 + din i1

opt = min

The set of all instances for the traveling salesman
= the traveling salesman problem N
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Instances of optimization problems

Example:
Vertex cover:
Input: a graph G = (V ,E)

S = {C ⊆ V : C is a vertex cover of G}

vertex cover: a set C of vertices such that every edge e ∈ E
has at least one vertex in C

f (C) = |C|
opt = min N
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Approximation Algorithms

Let Π be an optimization problem such that for every instance
of the problem and every feasible solution x ∈ S, the objective
function value takes positive value (f (x) > 0).

ρ-approximation algorithm:
I An algorithm A for an optimization problem Π that runs in

polynomial time.
I For every instance of Π, A outputs a feasible solution with

objective function value within ratio ρ of true optimum for
that instance.

ρ = approximation ratio / approximation factor
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More specifically:

I for minimization problems:
for every instance I, we have fA(I) ≤ ρ · OPT(I) , where
fA(I) is the value of the solution returned by the algorithm,
and
OPT(I) is the optimal solution value.

I for maximization problems: fA(I) ≥ OPT(I)/ρ .
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Approximation Algorithms and Schemes
ρ-approximation algorithm:

I An algorithm A for an optimization problem Π that runs in
polynomial time.

I For every instance of Π, A outputs a feasible solution with
objective function value within ratio ρ of true optimum for
that instance.

Polynomial-time approximation scheme (PTAS):
I A family of approximation algorithms {Aε : ε > 0} for a

problem Π.
I Aε is a (1 + ε)-approximation algorithm for Π.
I For every ε > 0, Aε runs in time polynomial in the size of

input instance.

Fully polynomial-time approximation scheme (FPTAS):
I PTAS such that Aε runs in time polynomial in the size of

input instance and 1/ε.
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Approaches to the Design of Approximation
Algorithms

There exist several approaches to the design of approximation
algorithms:

I combinatorial algorithms,
I algorithms based on linear programming,
I randomized algorithms,
I algorithms based on geometric ideas,
I etc.

From an abstract viewpoint ideas for development of
approximation algorithms are similar as with development of
efficient algorithms for polynomially solvable problems:

Find an appropriate combinatorial structure of the problem and
develop algorithmic techniques that will exploit this structure.
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A remark on the
running time of approximation algorithms.
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A remark on the running time

We typically require for approximation algorithms that they run
in polynomial time.

For particularly difficult problems we sometimes also allow
exponential running time.
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Example:

The bandwidth of a graph G = (V ,E) is defined as

min
f

max
uv=e∈E

|f (u)− f (v)| ,

where the minimum is taken over all bijections
f : V → {1, . . . ,n}.

I A graph G has bandwidth ≤ k if and only if there exists a
linear ordering of its vertex set such that the resulting
adjacency matrix of G has nonzero elements s only on
diagonals “close” to the main diagonal.
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Theorem
There exists a 2-approximation algorithm for the bandwidth
problem running in time O(2n).

(Fürer, Gaspers, Kasiviswanathan, 2013)

There are n! feasible solutions, which is significantly more than
2n.

The result becomes interesting in view of the fact that

an arbitrary constant-factor polynomial time approximation
of the bandwidth problem is NP-hard, even for trees.

(Dubey, Feige, Unger, 2011)
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Approximation Algorithms
for the Vertex Cover Problem
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The Vertex Cover Problem

Recall:
vertex cover in a graph G = (V ,E):
a subset C ⊆ V such that for all e ∈ E , e ∩ C 6= ∅

točka v pokritju

G
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The Vertex Cover Problem

Recall:
vertex cover in a graph G = (V ,E):
a subset C ⊆ V such that for all e ∈ E , e ∩ C 6= ∅

a vertex in the cover

G
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The Vertex Cover Problem

Consider the optimization version of the VERTEX COVER

problem:

MINIMUM VERTEX COVER

Input: Graph G = (V ,E).
Task: Find a minimum vertex cover in G.

In bipartite graphs, the problem can be solved optimally in
polynomial time.
For general graphs, the problem is NP-hard.

Recall: a matching in a graph is a subset of pairwise disjoint
edges.
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2-Approximation Algorithm for Vertex Cover

Consider the following algorithm:

Approx-Cover:
C := ∅;
while (∃e = uv ∈ E)(u, v ∈ V \ C) do

C := C ∪ {u, v}
end while
return C.

The algorithm computes an inclusion-wise maximal matching
M and returns the union of all edges in the matching.
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2-Approximation Algorithm for Vertex Cover
Claim
Approx-Cover is a 2-approximation algorithm for the MINIMUM

VERTEX COVER problem.

Proof:
The stopping criterion of the while loop guarantees that C is a
cover.
Clearly, the algorithm can be implemented to run in polynomial
time.
Let M be the maximal matching consisting of all edges chosen
by the algorithm.
Every vertex cover must contain at least one vertex of each
edge of M, hence OPT ≥ |M|
and consequently

|C| = 2|M| ≤ 2 · OPT .
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Can the factor of 2 in the analysis be improved?

No: it can happen that we get a 2-approximation and nothing
better.

Example:
Let G = Kn,n.
The algorithm always returns the whole vertex set as a vertex
cover, C = V (Kn,n). This is of size 2n.
However, any optimal solution is of size n
(either part of the bipartition). N
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Inapproximability issues

Is it possible to approximate the problem better?

I If there exists a polynomial 1.36-approximation algorithm
for MINIMUM VERTEX COVER, then P = NP (Dinur-Safra 2005).

I No ρ-approximation algorithm for MINIMUM VERTEX

COVER is known with ρ < 2.
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Greedy approximation

Consider also the following simple algorithm:

GREEDY APPROXIMATION

Input: Graph G = (V ,E).
Output: A cover C.
H := G
C := ∅
while (E(H) 6= ∅)

Let u be a vertex of maximum degree in H.
C := C ∪ {u}.
H := H − u.

end while
return C.
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Greedy approximation
Set C returned by the algorithm is clearly a vertex cover.

The approximation ratio of this algorithm can be arbitrarily large.
Example:
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order of vertices

as selected by the algorithm

The greedy approximation can take 13 vertices, the optimal
value is 6.
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Greedy approximation
The construction can be generalized, showing that the greedy
approximation has no constant approximation ratio.
(See Korte-Vygen, Combinatorial Optimization, p. 396–397.)

For n ≥ 3 and i ≤ n let Ai
n :=

∑i
j=2b

n
j c.

V (Gn) = {a1,a2, . . . ,aAn−1
n
,b1, . . . ,bn, c1, . . . , cn}.

E(Gn) = {bici | i = 1, . . . ,n} ∪⋃n−1
i=2

⋃Ai
n

j=Ai−1
n +1

{
ajbk | (j − Ai−1

n − 1)i + 1 ≤ k ≤ (j − Ai−1
n )i + 1

}
.

The algorithm will choose An−1
n + n vertices, while {b1, . . . ,bn}

is a vertex cover of size n.

An−1
n ≥ nH(n − 1)− n − (n − 2) ,

where H(n) =
∑n

i=1
1
i is the nth harmonic number.

(For every positive integer n, we have H(n) > ln n. In the example above we
had n = 6.)
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Approximating the Set Cover problem
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The SET COVER problem

SET COVER

Input: A ground set U = {u1, . . . ,un},
a family F = {S1, . . . ,Sm} of subsets of U,
(we assume S1 ∪ · · · ∪ Sm = U)
positive costs of subsets c(S1), . . . , c(Sm).

Task: Find a cheapest covering subfamily F ′ ⊆ F .

A subfamily F ′ = {Si1 , . . . ,Sik} is said to be covering
(or: a cover) if Si1 ∪ · · · ∪ Sik = U.
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Example:
U = {1,2,3,4,5,6}

S1 = {1,2,3,4}, c(S1) = 9
S2 = {1,2,5}, c(S2) = 5
S3 = {2,3,4}, c(S3) = 3
S4 = {2,3,6}, c(S3) = 4
S5 = {5,6}, c(S3) = 2

Cheapest cover: {S2,S3,S5}

Cost of the cover: c(S2) + c(S3) + c(S5) = 10.
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Greedy method for SET COVER

C: set of already covered elements of U

C = U \ C: set of not yet covered elements of U

effective cost of a set S := c(S)/|S ∩ C|

Greedy-Cover(U,S1, . . . ,Sm, c):
C ← ∅, F ← ∅
while C 6= U do

S ← set with minimum effective cost
F ← F ∪ {S}, C ← C ∪ S

end while
return F
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C: set of already covered elements of U

C = U \ C: set of not yet covered elements of U

effective cost of a set S := c(S)/|S ∩ C|

For the purpose of the analysis, we introduce a cost for each
newly covered element:

Greedy-Cover(U,S1, . . . ,Sm, c):
C ← ∅, F ← ∅
while C 6= U do

S ← set with minimum effective cost
α← c(S)/|S ∩ C|
for each u ∈ S ∩ C do cost(u) = α
F ← F ∪ {S}, C ← C ∪ S

end while
return F
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The analysis
We may assume that the algorithm covers elements u1, . . . ,un
in this order.

Claim
For all k = 1, . . . ,n we have:

cost(uk ) ≤ OPT
n − k + 1

.

Proof:
Let C be the set of uncovered elements just before element uk
gets covered.

Elements in C can be covered with at most |C| sets of total cost
≤ OPT. Hence, there exists a set S with effective cost ≤ OPT

C
.

It follows:
cost(uk ) ≤ OPT

C
≤ OPT

n − k + 1
.
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The analysis
Proposition
Greedy-Cover is an H(n)-approximation algorithm for SET

COVER, where

H(n) = 1 + 1/2 + 1/3 + . . .+ 1/n ≤ ln n + 1 .

Proof:

c(F ) =
n∑

k=1

cost(uk ) ≤
n∑

k=1

OPT
n − k + 1

= OPT ·

(
n∑

k=1

1
k

)
.

Most likely, this is best possible:
I For any ε > 0, if there exists an approximation algorithm for

SET COVER with approximation ratio (1− ε) ln n,
then P = NP (Dinur-Steurer 2014).
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Applications to Graph Problems:
Variants of Domination
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The dominating set problem

a dominating set in a graph G = (V ,E):
a set S ⊆ V such that every vertex is either in S or has a
neighbor in S

DOMINATING SET

Input: A graph G = (V ,E)
Task: Compute a dominating set of minimum size.

DOMINATING SET is a well known NP-hard problem.

How well can it be approximated?
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We can model DOMINATING SET as a special case of SET

COVER.

Let us say that a vertex v is dominated by a set S if
either v is in S or v has a neighbor in S.

Then, placing a vertex x in S dominates all elements of its
closed neighborhood, defined as

N[x ] = {x} ∪ N(x) .

So we can take:

I the ground set U = V ,
I the set family F = {Sv : v ∈ V} where Sv = N[v ],
I the cost function c(Sv ) = 1 for all v ∈ V .

Indeed, we then have:
A set D ⊆ V is a dominating set in G if and only if the set
{Sv : v ∈ D} is a covering subfamily of F . And conversely,
every covering subfamily arises this way.
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Corollary
The Dominating Set problem can be approximated to within a
factor of ln n + 1 on n-vertex graphs.

Two remarks:

1. This is essentially best possible.
I The inapproximability result of Dinur and Steurer for the

SET COVER problem implies a similar result for
Dominating Set.

2. The same approach can be used to model
many other variants of domination, for example:

I total domination: every vertex has a neighbor in the set
I distance-k domination: every vertex is at distance at

most k from a vertex in the set
I vertex cover

(here, as we know, one can do better: there is a 2-approx.)
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Another Variant of Domination:
Vector Domination

35 / 44



Vector domination in graphs
Given: a graph G = (V ,E)
For every vertex v , an integer r(v)

A set S ⊆ V is a vector dominating set for (G, r) if every vertex
in V \ S has at least r(v) neighbors in S.
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Vector domination in graphs

Given: a graph G = (V ,E)
For every vertex v , an integer r(v)

A set S ⊆ V is a vector dominating set for (G, r) if every vertex
in V \ S has at least r(v) neighbors in S.
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Vector domination in graphs

Given: a graph G = (V ,E)
For every vertex v , an integer r(v)

A set S ⊆ V is a vector dominating set for (G, r) if every vertex
in V \ S has at least r(v) neighbors in S.
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Vector domination in graphs

Vector domination generalizes:
I domination: r(v) = 1 for all v

vertex cover: r(v) = d(v) for all v
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Vector domination in graphs

Vector domination generalizes:
I domination: r(v) = 1 for all v

vertex cover: r(v) = d(v) for all v
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Vector domination in graphs

Vector domination generalizes:
I domination: r(v) = 1 for all v
I vertex cover: r(v) = d(v) for all v
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Vector domination in graphs

Vector domination generalizes:
I domination: r(v) = 1 for all v
I vertex cover: r(v) = d(v) for all v
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Vector domination in graphs

Given: a graph G = (V ,E)
For every vertex v , an integer r(v)

A set S ⊆ V is a vector dominating set for (G, r) if every vertex
in V \ S has at least r(v) neighbors in S.
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The vector domination problem

VECTOR DOMINATION

Input: A graph G = (V ,E), an function r(v) : V → Z+

Task: Compute a minimum vector dominating set for (G, r).

There is an extension of SET COVER called SET MULTICOVER,
where each element needs to be covered multiple times. This
problem can also be approximated greedily, with a ratio of H(∆)
where ∆ is the maximum size of a set in the family (Dobson 1982).

Bad news:
It is not clear how to model VECTOR DOMINATION in this setting.

Good news:
We can use a different result from 1982 to solve this problem!
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The vector domination problem
We will obtain the following:

Theorem
The VECTOR DOMINATION problem can be approximated in
polynomial time to within a factor of ln(2∆(G)) + 1,
where ∆(G) is the maximum degree of G.

First, note that we may assume that for all v ∈ V , we have
r(v) ≤ d(v), where d(v) is the degree (the number of
neighbors) of v in G:

I If r(v) > d(v), then v must be contained in every vector
dominating set.
Thus, we can set r(w)← r(w)− 1 for all w ∈ N(v) and
add v to an optimal (or approximate) solution for the
reduced problem on G − v .
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Approximating vector domination
Greedy Strategy

– start with S = ∅
– if S is not a vector dominating set, keep on adding to S

a vertex v ∈ V \ S maximizing f (S ∪ {v})− f (S)

argmaxv∈V (f (S ∪ {v})− f (S))

What is f?

f (X ) =
∑

v∈V fv (X ) , for all X ⊆ V , and

fv (X ) =

{
min{|X ∩ N(v)|, r(v)} if v 6∈ X ;

r(v) if v ∈ X .

|X ∩ N(v)| = the number of already chosen neighbors of v
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Approximating vector domination

f (X ) =
∑

v∈V fv (X ) , for all X ⊆ V , and

fv (X ) =

{
min{|X ∩ N(v)|, r(v)} if v 6∈ X ;

r(v) if v ∈ X .

Note that:
I f (V ) =

∑
v∈V r(v)

I f (X ) = f (V ) if and only if X ⊆ V is a vector dominating set
for (G, r).

I Hence, the VECTOR DOMINATION problem asks for a
smallest set X ⊆ V (G) with f (X ) = f (V ).
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Approximating vector domination

It can be shown that f is a (non-decreasing, integer-valued)
submodular set function.

Submodularity is a discrete analog of concavity:

X ⊆ Y ⇒ f (X ∪ {v})− f (X ) ≥ f (Y ∪ {v})− f (Y ) .

f is non-decreasing if X ⊆ Y ⇒ f (X ) ≤ f (Y )

Hence, the vector domination problem is a special case of the
Minimum Submodular Cover problem:

Input: A finite set V and an integer-valued non-decreasing
submodular set function f on subsets of V (given by an oracle).

Task: Find a smallest set X ⊆ V such that f (X ) = f (V ).
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Approximating vector domination

By a result of [Wolsey, 1982] on minimum submodular cover,
the greedy strategy approximates OPT by a factor of at most
H(max f ({y})).

For every y ∈ V , we have

f ({y}) =
∑

v∈V\{y}

fv ({y}) + fy ({y}) ≤ d(y) + r(y) ≤ 2d(y) .

Hence maxy∈V f ({y}) ≤ 2∆(G) and the greedy strategy
approximates OPT by a factor of at most

H(2∆(G)) ≤ ln(2∆(G)) + 1 ,

as claimed.
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