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Joint work with :
D. Corneil (Toronto), C. Paul (Montpellier), F. Dragan (Kent), V.
Chepoi (Marseille), B. Estrellon (Marseille), Y. Vaxes (Marseille),
Y. Xiang (Kent), C. Magnien (Paris), M. Latapy (Paris), P.
Crescenzi (Firenze), R. Grossi (Pisa), A. Marino (Pisa), J. Dusart
(Paris), R. Charpey (Paris), M. Borassi (Firence)
and discussion with many others . . .
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Basics Definitions

Definitions :

Let G be an undirected graph :

I exc(x) = maxy∈G{distance(x , y)} excentricity

I diam(G ) = maxx∈G{exc(x)} diameter

I radius(G ) = minx∈G{exc(x)}
I x ∈ V is a center of G , if exc(x) = radius(G )

First remarks of the definitions

distance computed in # edges
If x and y belong to different connected components d(x , y) =∞.
diameter : Max Max Min
radius : Min Max Min
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Trivial bounds

For any graph G :
radius(G ) ≤ diam(G ) ≤ 2radius(G ) and ∀e ∈ G ,
diam(G ) ≤ diam(G − e)

These bounds are tight

I If G is a path of length 2K, then diam(G ) = 2k = 2radius(G ),
and G admits a unique center, i.e. the middle of the path.

I If radius(G ) = diam(G ), then Center(G ) = V . All vertices are
centers (as for example in a cycle).
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If 2.radius(G ) = diam(G ), then *roughly* G has a tree shape (at
least it works for trees).
But there is no nice characterization of this class of graphs.
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Diameter

Applications

1. A graph parameter which measures the quality of services of a
network, in terms of worst cases, when all have a unitary cost.
Find critical edges e s.t. diam(G − e) > diam(G )

2. Many distributed algorithms can be analyzed with this
parameter (when a flooding technique is used to spread
information over the network or to construct routing tables).

3. Verify the small world hypothesis in some large social
networks, using J. Kleinberg’s definition of small world graphs.

4. Compute the diameter of the Internet graph, or some Web
graphs, i.e. massive data.
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1. Examples of diameter searches based on the algorithms
presented in this course :
http://gang.inria.fr/road/

2. OpenStreetMap (OSM) : 80 millions of nodes, average degree
3

3. Roadmaps graphs a special domain of research interest
Quasi-planar graph (bridges on the roads)

4. Never forget that computer science has an important
experimental part.

5. Many algorithmic ideas come out some experiment.

http://gang.inria.fr/road/
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Frequently Asked Questions (FAQ)

Usual questions on diameter, centers and radius :

I What is the best Program (resp. algorithm) available ?

I What is the complexity of diameter, center and radius
computations ?

I How to compute or approximate the diameter of huge graphs ?

I Find a center (or all centers) in a network, (in order to install
serveurs).
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Some notes

1. I was asked first this problem in 1980 by France Telecom for
the phone network (FT granted a PhD).

2. Marc Lesk obtained his PhD in 1984 with the title :
Couplages maximaux et diamètres de graphes.
Maximum matchings and diameter computations

3. But, with very little practical results for diameter
computations.



Diameter computations

Diameter computations

Some notes

1. I was asked first this problem in 1980 by France Telecom for
the phone network (FT granted a PhD).

2. Marc Lesk obtained his PhD in 1984 with the title :
Couplages maximaux et diamètres de graphes.
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I Our aim is to design an algorithm or heuristic to compute the
diameter of very large graphs

I Any algorithm that computes all distances between all pairs of
vertices, complexity O(n3) or O(nm). As for example with |V |
successive Breadth First Searches in O(n(n + m)).

I Best known complexity for an exact algorithm is O( n3

log3n
), in

fact computing all shortest paths.

I But also with at most O(Diam(G )) matrix multiplications.
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Computing diameter using fewest BFS possible

I Clemence Magnien and M. Latapy asked me again (2006) this
question about diameter.

I But in the meantime, I met Derek Corneil and Feodor Dragan,
we proved some theorems about diameter and chordals graphs
but above all I had learned many properties of graph searches
from Derek Corneil.

I I answered to Olivier Gascuel’s usual question, how to
compute diameter of phylogenetic trees, using the following
algorithm.
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Computing diameter using fewest BFS possible

1. Let us consider the procedure called : 2 consecutive BFS 1

Data: A graph G = (V ,E )

Result: u, v two vertices

Choose a vertex w ∈ V
u ← BFS(w)
v ← BFS(u)

Where BFS stands for Breadth First Search.
Therefore it is a linear procedure

1. Proposed the first time by Handler 1973
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Computing diameter using fewest BFS possible

Intuition behind the procedure
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Computing diameter using fewest BFS possible

I Handler’s classical result 73
If G is a tree, diam(G ) = d(u, v)
Easy using Jordan’s theorem.
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Computing diameter using fewest BFS possible

I Boris Aronov, Prosenjit Bose, Erik D. Demaine, Joachim
Gudmundsson, John Iacono, Stefan Langerman, and Michiel
Smid, Data structures for halfplane proximity queries and
incremental Voronoi diagrams, LATIN 2006 : Theoretical
informatics, Lecture Notes in Comput. Sci., vol. 3887,
Springer, Berlin, 2006, pp. 80–92.

I Stephen Alstrup, Thore Husfeldt, and Theis Rauhe, Marked
ancestor problems, IEEE Symposium on Foundations of
Computer Science, 1998, pp. 534–544.

I Camille Jordan, Sur les assemblages de lignes, Journal für
reine und angewandte Mathematik 70 (1869), 185–190.
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First theorem

Camille Jordan 1869 :

A tree admits one or two centers depending on the parity of its
diameter and furthermore all chains of maximum length starting at
any vertex contain this (resp. these) centers.

And radius(G ) = ddiam(G)
2 e
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Unfortunately it is not an algorithm !
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Computing diameter using fewest BFS possible

Certificates for the diameter

To give a certificate diam(G ) = k , it is enough to provide :

I two vertices x , y s.t. d(x , y) = k (diam(G ) ≥ k).

I a subgraph H ⊂ G with diam(H) = k (diam(G ) ≤ k).
H may belong to a class of graphs on which diameter
computations can be done in linear time, for example trees.
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Experimental results : M.H., M.Latapy, C. Magnien 2008

Randomized BFS procedure

Data: A graph G = (V ,E )

Result: u, v two vertices

Repeat α times :
Randomly Choose a vertex w ∈ V
u ← BFS(w)
v ← BFS(u)
Select the vertices u0, v0 s.t. distance(u0, v0) is maximal.
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Computing diameter using fewest BFS possible

1. This procedure gives a vertex u0 such that :
exc(u0) ≤ diam(G ) i.e. a lower bound of the diameter.

2. Use a spanning tree as a subgraph on the same vertex set to
obtain an upper bound by computing its exact diameter in
linear time (using the trivial bound diam(G ) ≤ diam(G − e)).

3. Spanning trees given by the BFS.
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Computing diameter using fewest BFS possible

I The Program and some Data on Web graphs or P-2-P
networks can be found

I http://www-rp.lip6.fr/~magnien/Diameter

I 2 millions of vertices, diameter 32 within 1

I Further experimentations by Crescenzi, Grossi, Marino (in
ESA 2010)
which confirm the excellence of the lower bound using
BFS ! ! ! !

http://www-rp.lip6.fr/~magnien/Diameter
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Computing diameter using fewest BFS possible

I Since α is a constant (≤ 1000), this method is still in linear
time and works extremely well on huge graphs (Web graphs,
Internet . . .)

I How can we explain the success of such a method ?

I Due to the many counterexamples for the 2 consecutive BFS
procedure. An explanation is necessary !
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Computing diameter using fewest BFS possible

2 kind of explanations

The method is good or the data used was good.

Partial answer

The method also works on several models of random graphs.
So let us try to prove the first fact

Restriction

First we are going to focus our study on the 2 consecutive BFS.
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Computing diameter using fewest BFS possible

Chordal graphs

1. A graph is chordal if it has no chordless cycle of length ≥ 4 .

2. If G is a chordal graph, Corneil, Dragan, H., Paul 2001, using
a variant called 2 consecutive LexBFS
d(u, v) ≤ diam(G ) ≤ d(u, v) + 1

3. Generalized by Corneil, Dragan, Kohler 2003 using 2
consecutive BFS :
d(u, v) ≤ diam(G ) ≤ d(u, v) + 1
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Computing diameter using fewest BFS possible

The 4-sweep : Crescenzi, Grossi, MH, Lanzi, Marino 2011

Diam = max{ecc(a1), ecc(a2)} and Rad = min{ecc(r), ecc(m1)}
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Computing diameter using fewest BFS possible

Intuition behind the 4-sweep heuristics

I Chepoi and Dragan has proved that for chordal graphs that a
center is at distance at most one of the middle vertex (m1 in
the picture).

I Roughly, we have the same results with 4-sweep than with
1000 2-sweep.
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It is still not al algorithm ! !
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Computing diameter using fewest BFS possible

An exact algorithm !

Compute the excentricity of the leaves of a BFS rooted in m1

with a stop condition.
Complexity is O(nm) in the worst case, but often linear in practice.
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Computing diameter using fewest BFS possible

Simple Lemma

If for some x ∈ Level(i) of the tree, we have ecc(x) > 2(i − 1)
then we can stop the exploration.

Proof

Let us consider y ∈ L(j) with j < i . ∀z ∈ ∪1≤k≤i−1L(k)
dist(z , y) ≤ 2(i − 1)
Therefore ecc(y) ≤ ecc(x) or the extreme vertices from y belong
to lower layers and have already been considered.
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iFub an exact O(mn) algorithm
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Bad example
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Results :

Diametre Facebook = 41 !, Average distance 4.74, Backstrom,
Boldi, Rosa, Uganden, Vigna 2011
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Comments

I Boldi and his group had to parallelize our algorithm and a
BFS on the giant connected component of Facebook would
take several hours. But only 17 BFS’s were needed.

I The 4-sweep method alway gives a lower bound of the
diameter not too far from the optimal,
the hard part is to obtain an upper bound with iFUB

I The worst examples are roadmap graphs with big treewidth
and big grids.
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The Stanford Database

Graph diam SNAP diam 4-Sweep

soc-Epinions1 14 15

soc-pokec-relationships 11 14

soc-Slashdot0811 10 12

soc-Slashdot0902 11 13

com-lj.ungraph 17 21

com-youtube.ungraph 20 24

com-DBLP 21 23

com-amazon 44 47

email-Enron 11 13

wikiTalk 9 11

cit-HepPh 12 14

cit-HepTh 13 15

CA-CondMat 14 15

CA-HepTh 17 18

web-Google 21 24

Figure: 4-sweep versus SNAP
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The Stanford Database

Graph diam SNAP diam 4-Sweep

amazon0302 32 38

amazon0312 18 20

amazon0505 20 22

amazon0601 21 25

p2p-Gnutella04 9 10

p2p-Gnutella24 10 11

p2p-Gnutella25 10 11

p2p-Gnutella30 10 11

roadNet-CA 849 865

roadNet-TX 1054 1064

Gowalla-edges 14 16

BrightKite-edges 16 18



Diameter computations

The Stanford Database

How can I certify my results ?

I How can I beat the value of Stanford database ?

I Then some * explains in a little footnote that the SNAP value
is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependant are better
that 1000 independant searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014 to
appear in DMTCS).
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How can I certify my results ?

I By certifying the longest path [x , y ] (as hard as computing a
BFS ?)

I Using another BFS programmed by others starting at x .

I Certifying that the computed BFS ordering is a legal BFS
ordering, using the 4-point condition. Which can be checked
in linear time for BFS and DFS.



Diameter computations

The Stanford Database

How can I certify my results ?

I By certifying the longest path [x , y ] (as hard as computing a
BFS ?)

I Using another BFS programmed by others starting at x .

I Certifying that the computed BFS ordering is a legal BFS
ordering, using the 4-point condition. Which can be checked
in linear time for BFS and DFS.



Diameter computations

The Stanford Database

How can I certify my results ?

I By certifying the longest path [x , y ] (as hard as computing a
BFS ?)

I Using another BFS programmed by others starting at x .

I Certifying that the computed BFS ordering is a legal BFS
ordering, using the 4-point condition. Which can be checked
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The Stanford Database

Graph Name Vertices
Edges

Diameter iFUB Diam. FourSweep

CA-HepTh 0.190 18 18

CA-GrQc 0.181 17 17

CA-CondMat 0.124 15 15

CA-AstroPh 0.047 14 14

roadNet-CA 0.355 865 865

roadNet-PA 0.353 794 780

roadNet-TX 0.359 1064 1064

email-Enron 0.1 13 13

email-EuAll 0.631 14 14

com-amazon 0.361 47 47

Amazon0302 0.212 38 38

Amazon0312 0.125 20 20

Amazon0505 0.122 22 22

Amazon0601 0.119 25 25

Gowalla edges 0.207 25 16

Brightkite edges 0.272 18 18

soc-Epinions1 0.149 15 15

Figure: 4-Sweep Results
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Recents results

A method symmetric for computing radius and diameter

M. Borassi, P. Crescenzi, R. Grossi, M.H., W. Kosters, A. Marino
and F. Takes, 2014

I A mixture with our approach and that of W. Kosters and F.
Takes in which a lower bound of the eccentricity of every
vertex is maintained at each BFS.

I It generalizes the 4-sweep to k-sweep.

I we generalize to maintain k values in each vertex.
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A method with no name yet

I Given a random vertex v1 and setting i = 1, repeat k times
the following :

1. Perform a BFS from vi and choose the vertex vi+1 as the
vertex x maximizing

∑
i
j=1d(vj , x).

2. Increment i .

I The maximum eccentricity found, i.e. maxi=1,...,k exc(vi ), is a
lower bound for the diameter.

I Compute the eccentricity of w , the vertex minimizing∑k
i=1 d(w , vi ).

I The minimum eccentricity found,
i.e. min{mini=1,...,k exc(vi ), exc(w)}, is an upper bound for
the radius.
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Halting conditions

To compute the exact values of radius and diameter, we use the
next lemmas.

Lemma 1

Let Diam(G ) be the diameter, let x and y be diametral vertices
(that is, d(x , y) = Diam(G )), and let v1, . . . , vk be k other
vertices. Then, Diam(G ) ≤ 2

k

∑k
i=1 d(x , vi ) or

Diam(G ) ≤ 2
k

∑k
i=1 d(vi , y).

proof

kDiam(G ) =
∑k

i=1 d(x , y) ≥
∑k

i=1 [d(x , vi ) + d(vi , y)] =∑k
i=1 d(x , vi ) +

∑k
i=1 d(vi , y).
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Lemma 2

Let x ∈ V be a center and let v1, . . . , vk be k other vertices. Then
Radius(G ) ≥ 1/k

∑k
i=1 d(x , vi )

proof

Let y ∈ V such that : Radius(G ) = d(x , y)
Then kRadius(G ) =

∑k
i=1 d(x , y) ≥

∑k
i=1 [d(x , vi ) + d(vi , y)] =∑k

i=1 d(x , vi ) +
∑k

i=1 d(vi , y).
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I If during the algorithm we maintain two variables Macsofar
and Minsofar (being respectively the maximum and the
minimum computed eccentricity)

I We only compute eccentricity of vertices x such that
Maxsofar ≤ 2

k

∑k
i=1 d(x , vi )

I To find centers we only compute eccentricity of vertices x
such that : 1/k

∑k
i=1 d(x , y) ≤ Minsofar
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Recents results

I This method generalizes the 4-sweep and seems to better
handle the cases where 1000 BFS was needed to find the
exact value in the previous method.

I For the same examples it never goes further 10-100 BFS.

I Strangely replacing Sum by Max as suggested by some experts
does not change the behavior of the algorithm.
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With this method we were able to disprove conjectures inspired
from S. Milgram about the 6 degrees of separation

1. Kevin Bacon games on the actors graph

2. Diameter of Wikipedia (the Wiki Game)
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Kevin Bacon

His name was used for a popular TV game in US, The Six Degrees
of Kevin Bacon, in which the goal is to connect an actor to Kevin
Bacon in less than 6 edges.
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Recents results

Actors graph 2014

I The 2014 graph has 1.797.446 in the biggest connected
component, a few more if we consider the whole graph. The
number of undirected edges in the biggest connected
component is 72.880.156.

I An actor with Bacon number 8 is Shemise Evans, and the
path can be found at http ://oracleofbacon.org/ by writing
Shemise Evans in the box. Even if their graph does not
coincide exactly with our graph, this is a shortest path in both
of them :



Diameter computations

Recents results

Actors graph 2014

I The 2014 graph has 1.797.446 in the biggest connected
component, a few more if we consider the whole graph. The
number of undirected edges in the biggest connected
component is 72.880.156.

I An actor with Bacon number 8 is Shemise Evans, and the
path can be found at http ://oracleofbacon.org/ by writing
Shemise Evans in the box. Even if their graph does not
coincide exactly with our graph, this is a shortest path in both
of them :



Diameter computations

Recents results

Shemise Evans → Casual Friday (2008) → Deniz Buga
Deniz Buga → Walking While Sleeping (2009)→ Onur Karaoglu
Onur Karaoglu→ Kardesler (2004)→ Fatih Genckal
Fatih Genckal → Hasat (2012) → Mehmet Ünal
Mehmet Ünal→ Kayip özgürlük (2011)→ Aydin Orak
Aydin Orak → The Blue Man (2014)→Alex Dawe
Alex Dawe→ Taken 2 (2012)→ Rade Serbedzija
Rade Serbedzija→ X-Men : First Class (2011) → Kevin Bacon



Diameter computations

Recents results

Graphe de Twitter 2011

Graphe orienté de 500 millions de sommets
2,5 Milliard d’arêtes
Diamètre 150 de la comp. fortement connexe géante, calculé fin
2015.
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Radius versus diameter

I Let D, R be respectively two potential values for diam(G ) and
radius(G ).

I To certify these values we need to prove :

I ∀x ∈ V (G ), ∀y ∈ V (G ), we have d(x , y) ≤ D.

I ∀x ∈ V (G ), ∃y ∈ V (G ) such that d(x , y) ≥ R.

I Not exactly the same quantifiers !
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Relationships between diameter and δ-hyperbolicity

δ-Hyperbolic metric spaces have been defined by M. Gromov in
1987 via a simple 4-point condition :
for any four points u, v ,w , x , the two larger of the distance sums
d(u, v) + d(w , x), d(u,w) + d(v , x), d(u, x) + d(v ,w) differ by at
most 2δ.
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Theorem Chepoi, Dragan, Estellon, M.H., Vaxes 2008

If u is the last vertex of a 2-sweep then :
exc(u) ≥ diam(G )-2.δ(G ) and
radius(G ) ≤ d(d(u, v) + 1)/2e+ 3δ(G )
Furthermore the set of all centers C (G ) of G is contained in the
ball of radius 5δ(G ) + 1 centered at a middle vertex m of any
shortest path connecting u and v in G .

Consequences

The 2-sweep (resp 4-sweep) method failure is bounded by the
δ-hyperbolicity of the graph.
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Nice

Because many real networks have small δ-hyperbolicity.
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The difficulty of the certificate

δ-hyperbolicity and treewidth (existence of big grids as subgraphs)
must play a role.
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Chordal graphs and split graphs
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Disjoint sets problem

Disjoint sets problem

A finite set X , F a collection {S1, . . . ,Sk} of subsets of X .
∃i , j ∈ [1, k] such that Si ∩ Sj = ∅ ?

Linearity

Can this problem be solved in linear time ?
Size of the problem : |X |+ k +

∑i=k
i=1 |Si |

size of the incidence bipartite graph
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SETH : Strong Exponential Time Hypothesis

SETH

There is no algorithm for solving the k-SAT problem with n
variables in O((2− ε)n) where ε does not depend on k .
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Lower bounds for diameter computations

Let us consider an instance I of k − SAT with 2n boolean variables
x1, . . . , x2n, and a set C of m clauses C1, . . .Cm, we build an
instance of Disjoint-set problem as follows :

I The gound set X is the set of clauses + 2 extras vertices a, b.

I We consider now A,B the sets of all truth assignments of
x1, . . . , xn, and xn+1, . . . x2n, respectively.

I For each truth t assigment in A (resp. in B) we define
St = {C ∈ C such that t does not satisfy C} ∪ {a} (resp.
∪{b}).
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Lower bounds for diameter computations

I The sets S ′s defined with A (resp. B) always intersect
because of a (resp. b).

I If there exists Su,Sv that do not intersect. Necessarily u is a
truth assignment in A and v in B (or the converse, but they
cannot be on the same set of variables because of the dummy
vertices a, b).
This means that for each clause Ci of I , if Ci /∈ Su, then the
truth v assignment satisfies Ci .
Similarly if Ci /∈ Sv , then the truth u assignment satisfies Ci .
But Su ∩ Sv = ∅ means that for every clause Ci either :
Ci /∈ Su or Ci /∈ Sv .

I Therefore :
I is satisfiable iff there exist 2 disjoint sets Su,Sv .
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Complexity issues

I Size of the k − SAT instance is bounded by :
K = 2n + m + km

I Size of the Disjoint set instance :
N = 2n+1 + m + 2 vertices
and at most M = m2n+1 edges.

I To compute this instance we need to evaluate the m,
k-clauses for each half-truth assigment.
Can be done in O(K ), so in the whole : O(2n+1K ).

I If there exists an algorithm for the Disjoint set problem in less
than O(NM1−ε)
it would imply an algorithm for k − SAT in less than
O((2− ε)2n) contradiction the SETH.
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Consequences

Practically there is no hope to design a linear time algorithm for :

1. Disjoint set problem

2. Diameter computations for chordal graphs and split graphs

3. And many other related problems . . . such as betweenness
centrality

4. but not all O(mn) problems as for example transitive closure,
existence of a triangle . . .
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Huge graphs

BFS versus LL

I Level Layered search visits the vertices according to their
distance to the starting vertex, with no extra condition on
each level. It differs from BFS, since for BFS via the queue
data structure the visiting ordering of Level(i+1) is forced by
the visiting ordering of Level(i).

I The end vertex problem is polynomial for LL.

I Many authors make no difference between BFS and LL
(even Cormen, Leiserson and Rivest in their book :
Introduction to algorithms).

I LL+ ends at a vertex with minimum degree from the previous
layer.
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1. To handle huge graphs we already have : graph searches.

2. But BFS is not so easy to program in a distributed
environment.

3. For example, using Map - Reduce operations as popularized
by Google.

4. Hot topic to find good way to handle huge graphs in a
distributed system.

5. In 2010 Google proposes a language named Pregel.
Another one Giraf for the Hadoop platform (available free)
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Theoretical aspects
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Applied Mathematic, Vol 113(2-3) : 143-166 (2001)
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on diameters, centers, and approximating trees of δ-hyperbolic
geodesic spaces and graphs, TGCT08 Paris, Electronic
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Computational aspects

I C. Magnien, M. Latapy, M. Habib, Fast computation of
empirically tight bounds for the diameter of massive graphs,
Journal of Experimental Algorithmics, 13 (2008).

I P. Crescenzi, R. Grossi, M. Habib, L. Lanzi and A. Marino, On
Computing the Diameter of Real-World Undirected graphs,
Theor. Comput. Sci. 514 : 84-95 (2013).
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