
Graph Searching is playing with orders

Graph Searching is playing with orders

Michel Habib
habib@irif.fr

http://www.irif.fr/~habib

7 novembre 2016

http://www.irif.fr/~habib

Graph Searching is playing with orders

Schedule of this course

Introduction to graph search

Application to Tarjan’s strongly connected components algorithm

End vertices

TBLS, a Tie-Breaking Label Search

Two new searches LEXUP and LEXDOWN with no application

Graph Searching is playing with orders

Schedule of this course

Introduction to graph search

Application to Tarjan’s strongly connected components algorithm

End vertices

TBLS, a Tie-Breaking Label Search

Two new searches LEXUP and LEXDOWN with no application

Graph Searching is playing with orders

Schedule of this course

Introduction to graph search

Application to Tarjan’s strongly connected components algorithm

End vertices

TBLS, a Tie-Breaking Label Search

Two new searches LEXUP and LEXDOWN with no application

Graph Searching is playing with orders

Schedule of this course

Introduction to graph search

Application to Tarjan’s strongly connected components algorithm

End vertices

TBLS, a Tie-Breaking Label Search

Two new searches LEXUP and LEXDOWN with no application

Graph Searching is playing with orders

Schedule of this course

Introduction to graph search

Application to Tarjan’s strongly connected components algorithm

End vertices

TBLS, a Tie-Breaking Label Search

Two new searches LEXUP and LEXDOWN with no application

Graph Searching is playing with orders

Introduction to graph search

Introduction to graph search

Application to Tarjan’s strongly connected components algorithm

End vertices

TBLS, a Tie-Breaking Label Search

Two new searches LEXUP and LEXDOWN with no application

Graph Searching is playing with orders

Introduction to graph search

Graph searches are very well known and used in many
situations :

1. ”Fil d’ariane” in the Greek mythology.

2. Euler (1735) for solving the famous walk problem in
Kœnisberg city

3. Euler’s theorem proved by Hierholzer in 1873.

4. Tremaux (1882) and Tarry (1895) introduced DFS to solve
maze problems

5. Fleury, proposed a nice algorithm to compute an Euler Tour,
1882

6. Computer scientists from 1950, in particular in the 70’s,
Tarjan for new applications of DFS....

7. 4 points characterizations Corneil, Krueger (2008), and the
definition of LDFS a new interesting basic search.

Graph Searching is playing with orders

Introduction to graph search

Graph searches are very well known and used in many
situations :

1. ”Fil d’ariane” in the Greek mythology.

2. Euler (1735) for solving the famous walk problem in
Kœnisberg city

3. Euler’s theorem proved by Hierholzer in 1873.

4. Tremaux (1882) and Tarry (1895) introduced DFS to solve
maze problems

5. Fleury, proposed a nice algorithm to compute an Euler Tour,
1882

6. Computer scientists from 1950, in particular in the 70’s,
Tarjan for new applications of DFS....

7. 4 points characterizations Corneil, Krueger (2008), and the
definition of LDFS a new interesting basic search.

Graph Searching is playing with orders

Introduction to graph search

Graph searches are very well known and used in many
situations :

1. ”Fil d’ariane” in the Greek mythology.

2. Euler (1735) for solving the famous walk problem in
Kœnisberg city

3. Euler’s theorem proved by Hierholzer in 1873.

4. Tremaux (1882) and Tarry (1895) introduced DFS to solve
maze problems

5. Fleury, proposed a nice algorithm to compute an Euler Tour,
1882

6. Computer scientists from 1950, in particular in the 70’s,
Tarjan for new applications of DFS....

7. 4 points characterizations Corneil, Krueger (2008), and the
definition of LDFS a new interesting basic search.

Graph Searching is playing with orders

Introduction to graph search

Graph searches are very well known and used in many
situations :

1. ”Fil d’ariane” in the Greek mythology.

2. Euler (1735) for solving the famous walk problem in
Kœnisberg city

3. Euler’s theorem proved by Hierholzer in 1873.

4. Tremaux (1882) and Tarry (1895) introduced DFS to solve
maze problems

5. Fleury, proposed a nice algorithm to compute an Euler Tour,
1882

6. Computer scientists from 1950, in particular in the 70’s,
Tarjan for new applications of DFS....

7. 4 points characterizations Corneil, Krueger (2008), and the
definition of LDFS a new interesting basic search.

Graph Searching is playing with orders

Introduction to graph search

Graph searches are very well known and used in many
situations :

1. ”Fil d’ariane” in the Greek mythology.

2. Euler (1735) for solving the famous walk problem in
Kœnisberg city

3. Euler’s theorem proved by Hierholzer in 1873.

4. Tremaux (1882) and Tarry (1895) introduced DFS to solve
maze problems

5. Fleury, proposed a nice algorithm to compute an Euler Tour,
1882

6. Computer scientists from 1950, in particular in the 70’s,
Tarjan for new applications of DFS....

7. 4 points characterizations Corneil, Krueger (2008), and the
definition of LDFS a new interesting basic search.

Graph Searching is playing with orders

Introduction to graph search

Graph searches are very well known and used in many
situations :

1. ”Fil d’ariane” in the Greek mythology.

2. Euler (1735) for solving the famous walk problem in
Kœnisberg city

3. Euler’s theorem proved by Hierholzer in 1873.

4. Tremaux (1882) and Tarry (1895) introduced DFS to solve
maze problems

5. Fleury, proposed a nice algorithm to compute an Euler Tour,
1882

6. Computer scientists from 1950, in particular in the 70’s,
Tarjan for new applications of DFS....

7. 4 points characterizations Corneil, Krueger (2008), and the
definition of LDFS a new interesting basic search.

Graph Searching is playing with orders

Introduction to graph search

Graph searches are very well known and used in many
situations :

1. ”Fil d’ariane” in the Greek mythology.

2. Euler (1735) for solving the famous walk problem in
Kœnisberg city

3. Euler’s theorem proved by Hierholzer in 1873.

4. Tremaux (1882) and Tarry (1895) introduced DFS to solve
maze problems

5. Fleury, proposed a nice algorithm to compute an Euler Tour,
1882

6. Computer scientists from 1950, in particular in the 70’s,
Tarjan for new applications of DFS....

7. 4 points characterizations Corneil, Krueger (2008), and the
definition of LDFS a new interesting basic search.

Graph Searching is playing with orders

Introduction to graph search

First course of Graph Properties, I know in Paris, at CNAM

Graphs or networks :
A. Sainte-Laguë, Les réseaux ou graphes, Gauthier-Villars,
Paris,1926.

Graph Searching is playing with orders

Introduction to graph search

Some definitions

Graph Search

The graph is supposed to be connected so as the set of visited
vertices. After choosing an initial vertex, a search of a connected
graph visits each of the vertices and edges of the graph such that a
new vertex is visited only if it is adjacent to some previously visited
vertex.
At any point there may be several vertices that may possibly be
visited next. To choose the next vertex we need a tie-break rule.
The breadth-first search (BFS) and depth-first search (DFS)
algorithms are the traditional strategies for determining the next
vertex to visit.

Graph Searching is playing with orders

Introduction to graph search

They are many formalisms to represent graph search depending on
the view point :

I Data structures involved

I Implementation issues

I Path algebras

I Bio-inspired graph searches (as used by Amos Korman with
ants)

I Reachability problems in complexity theory

I Here we want to focus on the visiting ordering of the vertices
and on the tie-break process that distinguishes graph searches

Graph Searching is playing with orders

Introduction to graph search

They are many formalisms to represent graph search depending on
the view point :

I Data structures involved

I Implementation issues

I Path algebras

I Bio-inspired graph searches (as used by Amos Korman with
ants)

I Reachability problems in complexity theory

I Here we want to focus on the visiting ordering of the vertices
and on the tie-break process that distinguishes graph searches

Graph Searching is playing with orders

Introduction to graph search

They are many formalisms to represent graph search depending on
the view point :

I Data structures involved

I Implementation issues

I Path algebras

I Bio-inspired graph searches (as used by Amos Korman with
ants)

I Reachability problems in complexity theory

I Here we want to focus on the visiting ordering of the vertices
and on the tie-break process that distinguishes graph searches

Graph Searching is playing with orders

Introduction to graph search

They are many formalisms to represent graph search depending on
the view point :

I Data structures involved

I Implementation issues

I Path algebras

I Bio-inspired graph searches (as used by Amos Korman with
ants)

I Reachability problems in complexity theory

I Here we want to focus on the visiting ordering of the vertices
and on the tie-break process that distinguishes graph searches

Graph Searching is playing with orders

Introduction to graph search

They are many formalisms to represent graph search depending on
the view point :

I Data structures involved

I Implementation issues

I Path algebras

I Bio-inspired graph searches (as used by Amos Korman with
ants)

I Reachability problems in complexity theory

I Here we want to focus on the visiting ordering of the vertices
and on the tie-break process that distinguishes graph searches

Graph Searching is playing with orders

Introduction to graph search

They are many formalisms to represent graph search depending on
the view point :

I Data structures involved

I Implementation issues

I Path algebras

I Bio-inspired graph searches (as used by Amos Korman with
ants)

I Reachability problems in complexity theory

I Here we want to focus on the visiting ordering of the vertices
and on the tie-break process that distinguishes graph searches

Graph Searching is playing with orders

Introduction to graph search

1. For us a graph search just produces a total ordering of the
vertices.

2. In the following an ordering of the vertices, always means a
total ordering of the vertices.

3. Seminal paper with a systematic study of graph search :
D.G. Corneil et R. M. Krueger, A unified view of graph
searching, SIAM J. Discrete Math, 22, Num 4 (2008)
1259-1276

Graph Searching is playing with orders

Introduction to graph search

1. For us a graph search just produces a total ordering of the
vertices.

2. In the following an ordering of the vertices, always means a
total ordering of the vertices.

3. Seminal paper with a systematic study of graph search :
D.G. Corneil et R. M. Krueger, A unified view of graph
searching, SIAM J. Discrete Math, 22, Num 4 (2008)
1259-1276

Graph Searching is playing with orders

Introduction to graph search

1. For us a graph search just produces a total ordering of the
vertices.

2. In the following an ordering of the vertices, always means a
total ordering of the vertices.

3. Seminal paper with a systematic study of graph search :
D.G. Corneil et R. M. Krueger, A unified view of graph
searching, SIAM J. Discrete Math, 22, Num 4 (2008)
1259-1276

Graph Searching is playing with orders

Introduction to graph search

Generic Search

1

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

Graph Searching is playing with orders

Introduction to graph search

Generic Search

2

1

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

Graph Searching is playing with orders

Introduction to graph search

Generic Search

3

1

2

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

Graph Searching is playing with orders

Introduction to graph search

Generic Search

4

1

2

3

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

Graph Searching is playing with orders

Introduction to graph search

Generic Search

5

1

2

3

4

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

Graph Searching is playing with orders

Introduction to graph search

Generic Search

6

1

2

3

4

5
Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

Graph Searching is playing with orders

Introduction to graph search

Generic Search

7

1

2

3

4

56
Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

Graph Searching is playing with orders

Introduction to graph search

Generic search

S ← {s}
for i ← 1 to n do

Pick an unnumbered vertex v of S
σ(i)← v
foreach unnumbered vertex w ∈ N(v) do

if w /∈ S then
Add w to S

end
end

end

Graph Searching is playing with orders

Introduction to graph search

Generic question ?

Let a, b et c be 3 vertices such that ab /∈ E et ac ∈ E .

a cb

Under which condition could we visit first a then b and last c ?

Graph Searching is playing with orders

Introduction to graph search

Property (Generic)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ b et db ∈ E

<

cba

d <

Theorem

For a graph G = (V ,E), an ordering σ on V is a generic search of
G iff σ satisfies property (Generic).

Graph Searching is playing with orders

Introduction to graph search

Property (Generic)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ b et db ∈ E

<

cba

d <

Theorem

For a graph G = (V ,E), an ordering σ on V is a generic search of
G iff σ satisfies property (Generic).

Graph Searching is playing with orders

Introduction to graph search

Most of the searches that we will study are refinement of this
generic search

I i.e. we just add new rules to follow for the choice of the next
vertex to be visited

I DFS (Stack), BFS(Queue), Dijkstra (Heap), . . .

I Graph searches mainly differ by the management of the
tie-break set

Graph Searching is playing with orders

Introduction to graph search

Most of the searches that we will study are refinement of this
generic search

I i.e. we just add new rules to follow for the choice of the next
vertex to be visited

I DFS (Stack), BFS(Queue), Dijkstra (Heap), . . .

I Graph searches mainly differ by the management of the
tie-break set

Graph Searching is playing with orders

Introduction to graph search

Most of the searches that we will study are refinement of this
generic search

I i.e. we just add new rules to follow for the choice of the next
vertex to be visited

I DFS (Stack), BFS(Queue), Dijkstra (Heap), . . .

I Graph searches mainly differ by the management of the
tie-break set

Graph Searching is playing with orders

Introduction to graph search

BFS

Data: a graph G = (V ,E) and a start vertex s ∈ V

Result: an ordering σ of V

Initialize queue to {s}
for i ← 1 à n do

dequeue v from beginning of queue
σ(i)← v
foreach unnumbered vertex w ∈ N(v) do

if w is not already in queue then
enqueue w to the end of queue

end
end

end

Algorithm 1: Breadth First Search (BFS)

Graph Searching is playing with orders

Introduction to graph search

Property (BFS)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ a et db ∈ E

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a BFS of G iff σ
satisfies property (BFS).

Graph Searching is playing with orders

Introduction to graph search

Property (BFS)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ a et db ∈ E

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a BFS of G iff σ
satisfies property (BFS).

Graph Searching is playing with orders

Introduction to graph search

Applications of BFS

1. Distance computations (unit length), diameter and centers,
(see course # 2)

2. BFS provides a useful layered structure of the graph

3. Using BFS to search an augmenting path provides a
polynomial implementation of Ford-Fulkerson maximum flow
algorithm.

Graph Searching is playing with orders

Introduction to graph search

Applications of BFS

1. Distance computations (unit length), diameter and centers,
(see course # 2)

2. BFS provides a useful layered structure of the graph

3. Using BFS to search an augmenting path provides a
polynomial implementation of Ford-Fulkerson maximum flow
algorithm.

Graph Searching is playing with orders

Introduction to graph search

Applications of BFS

1. Distance computations (unit length), diameter and centers,
(see course # 2)

2. BFS provides a useful layered structure of the graph

3. Using BFS to search an augmenting path provides a
polynomial implementation of Ford-Fulkerson maximum flow
algorithm.

Graph Searching is playing with orders

Introduction to graph search

Lexicographic Breadth First Search (LBFS)

Data: a graph G = (V ,E) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {n}
for i ← n à 1 do

Pick an unnumbered vertex v with lexicographically largest label
σ(i)← v
foreach unnumbered vertex w adjacent to v do

label(w)← label(w).{i}
end

end

Algorithm 2: LBFS

Graph Searching is playing with orders

Introduction to graph search

{7}{7} 7

{7}

Graph Searching is playing with orders

Introduction to graph search

6 7

{7}

{7}{6}

{6}

Graph Searching is playing with orders

Introduction to graph search

{5}

7 {7}{6} 6

5{65}

Graph Searching is playing with orders

Introduction to graph search

{54}

7{6} 6

5{65}

4

Graph Searching is playing with orders

Introduction to graph search

3

76

5

4

{54}

{63}

Graph Searching is playing with orders

Introduction to graph search

2 76

5

4

{54}3

Graph Searching is playing with orders

Introduction to graph search

1

76

5

4

3

2

Graph Searching is playing with orders

Introduction to graph search

It is just a breadth first search with a tie break rule.
We are now considering a characterization of the
order in which a LBFS explores the vertices.

Graph Searching is playing with orders

Introduction to graph search

Property (LexB)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ a et db ∈ E et
dc /∈ E .

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a LBFS of G iff σ
satisfies property (LexB).

Graph Searching is playing with orders

Introduction to graph search

Property (LexB)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ a et db ∈ E et
dc /∈ E .

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a LBFS of G iff σ
satisfies property (LexB).

Graph Searching is playing with orders

Introduction to graph search

Why LBFS behaves so nicely on well-structured graphs

A nice recursive property

On every tie-break set S , LBFS operates on G (S) as a LBFS.

proof

Consider a, b, c ∈ S such that a <σ b <σ c and ac ∈ E and
ab /∈ E , then it must exist a vertex d such that d <σ a et db ∈ E
et dc /∈ E . But then necessarily d ∈ S .

Remark

Analogous properties are false for other classical searches.

Graph Searching is playing with orders

Introduction to graph search

Why LBFS behaves so nicely on well-structured graphs

A nice recursive property

On every tie-break set S , LBFS operates on G (S) as a LBFS.

proof

Consider a, b, c ∈ S such that a <σ b <σ c and ac ∈ E and
ab /∈ E , then it must exist a vertex d such that d <σ a et db ∈ E
et dc /∈ E . But then necessarily d ∈ S .

Remark

Analogous properties are false for other classical searches.

Graph Searching is playing with orders

Introduction to graph search

Why LBFS behaves so nicely on well-structured graphs

A nice recursive property

On every tie-break set S , LBFS operates on G (S) as a LBFS.

proof

Consider a, b, c ∈ S such that a <σ b <σ c and ac ∈ E and
ab /∈ E , then it must exist a vertex d such that d <σ a et db ∈ E
et dc /∈ E . But then necessarily d ∈ S .

Remark

Analogous properties are false for other classical searches.

Graph Searching is playing with orders

Introduction to graph search

LexBFS versus LBFS !

Google Images query : LBFS (thanks to Fabien)

yields :

One of the First Answer

Graph Searching is playing with orders

Introduction to graph search

LexBFS versus LBFS !

Google Images query : LBFS (thanks to Fabien)

yields :

One of the First Answer

Graph Searching is playing with orders

Introduction to graph search

Applications of LBFS

1. Most famous one : chordal graph recognition via simplicial
elimination schemes (easy application of the 4-points
condition)

2. For many classes of graphs using LBFS ordering ”backward”
provides structural information on the graph.

3. Last visited vertex (or clique) has some property (example
simplicial for chordal graph)

4. Of course property LexB was known by authors such as Tarjan
or Golumbic to study chordal graphs but they did not noticed
that it was a characterization of LBFS.

Graph Searching is playing with orders

Introduction to graph search

Applications of LBFS

1. Most famous one : chordal graph recognition via simplicial
elimination schemes (easy application of the 4-points
condition)

2. For many classes of graphs using LBFS ordering ”backward”
provides structural information on the graph.

3. Last visited vertex (or clique) has some property (example
simplicial for chordal graph)

4. Of course property LexB was known by authors such as Tarjan
or Golumbic to study chordal graphs but they did not noticed
that it was a characterization of LBFS.

Graph Searching is playing with orders

Introduction to graph search

Applications of LBFS

1. Most famous one : chordal graph recognition via simplicial
elimination schemes (easy application of the 4-points
condition)

2. For many classes of graphs using LBFS ordering ”backward”
provides structural information on the graph.

3. Last visited vertex (or clique) has some property (example
simplicial for chordal graph)

4. Of course property LexB was known by authors such as Tarjan
or Golumbic to study chordal graphs but they did not noticed
that it was a characterization of LBFS.

Graph Searching is playing with orders

Introduction to graph search

Applications of LBFS

1. Most famous one : chordal graph recognition via simplicial
elimination schemes (easy application of the 4-points
condition)

2. For many classes of graphs using LBFS ordering ”backward”
provides structural information on the graph.

3. Last visited vertex (or clique) has some property (example
simplicial for chordal graph)

4. Of course property LexB was known by authors such as Tarjan
or Golumbic to study chordal graphs but they did not noticed
that it was a characterization of LBFS.

Graph Searching is playing with orders

Introduction to graph search

LDFS

BFS vs LBFS

BFS

d cba

LBFS

d cba

DFS vs LDFS

DFS

d cba

LDFS

Graph Searching is playing with orders

Introduction to graph search

LDFS

BFS vs LBFS

BFS

d cba

LBFS

d cba

DFS vs LDFS

DFS

d cba

LDFS

Graph Searching is playing with orders

Introduction to graph search

LDFS

BFS vs LBFS

BFS

d cba

LBFS

d cba

DFS vs LDFS

DFS

d cba

LDFS

d cba

Graph Searching is playing with orders

Introduction to graph search

Property (LD)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that a <σ d <σ b and db ∈ E
and dc /∈ E .

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a LDFS of G iff σ
satisfies property (LD).

Graph Searching is playing with orders

Introduction to graph search

Property (LD)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that a <σ d <σ b and db ∈ E
and dc /∈ E .

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a LDFS of G iff σ
satisfies property (LD).

Graph Searching is playing with orders

Introduction to graph search

Lexicographic Depth First Search (LDFS)

Data: a graph G = (V ,E) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {0}
for i ← 1 à n do

Pick an unnumbered vertex v with lexicographically largest label
σ(i)← v
foreach unnumbered vertex w adjacent to v do

label(w)← {i}.label(w)
end

end

Graph Searching is playing with orders

Introduction to graph search

LDFS example

a
•

b•c •d •

e•

LDFS visiting a then b

Graph Searching is playing with orders

Introduction to graph search

LDFS example II

a
•

b•c (2, 1)•d (1)•

e (2)
•

LDFS visiting a then b must visit c

Graph Searching is playing with orders

Introduction to graph search

LDFS example III

a
•

b•c •d (3, 1)•

e (3, 2)
•

LDFS visiting a, b, c must visit e

Graph Searching is playing with orders

Introduction to graph search

LDFS example IV

a
•

b•c •d (3, 1)•

e•

LDFS visiting a, b, c , e and must finish in d

Graph Searching is playing with orders

Introduction to graph search

Applications of LDFS

I Hard to find application of this new tool !

I Finding long paths, a very simple greedy algorithm :

I LDFS-based certifying algorithm for the Minimum Path Cover
problem on cocomparability graphs
D. Corneil, B. Dalton and M. Habib SIAM J. of Computing
42(3) : 792-807 (2013).

I Nice graph based heuristics for community detection, joint
work with J. Creusefond (PhD in Caen).

Graph Searching is playing with orders

Introduction to graph search

Applications of LDFS

I Hard to find application of this new tool !

I Finding long paths, a very simple greedy algorithm :

I LDFS-based certifying algorithm for the Minimum Path Cover
problem on cocomparability graphs
D. Corneil, B. Dalton and M. Habib SIAM J. of Computing
42(3) : 792-807 (2013).

I Nice graph based heuristics for community detection, joint
work with J. Creusefond (PhD in Caen).

Graph Searching is playing with orders

Introduction to graph search

Applications of LDFS

I Hard to find application of this new tool !

I Finding long paths, a very simple greedy algorithm :

I LDFS-based certifying algorithm for the Minimum Path Cover
problem on cocomparability graphs
D. Corneil, B. Dalton and M. Habib SIAM J. of Computing
42(3) : 792-807 (2013).

I Nice graph based heuristics for community detection, joint
work with J. Creusefond (PhD in Caen).

Graph Searching is playing with orders

Introduction to graph search

Applications of LDFS

I Hard to find application of this new tool !

I Finding long paths, a very simple greedy algorithm :

I LDFS-based certifying algorithm for the Minimum Path Cover
problem on cocomparability graphs
D. Corneil, B. Dalton and M. Habib SIAM J. of Computing
42(3) : 792-807 (2013).

I Nice graph based heuristics for community detection, joint
work with J. Creusefond (PhD in Caen).

Graph Searching is playing with orders

Introduction to graph search

I So far we have considered visiting orderings of the vertices
which characterize graph searches such as Generic Search,
BFS, DFS, LBFS, LDFS.

I These orderings allow to prove properties on graph searches
(without considering the algorithm itself)

I But also to certify (as for example for BFS and diameter
computations)

I Let us now go a little further with tie-breaking.

Graph Searching is playing with orders

Introduction to graph search

I So far we have considered visiting orderings of the vertices
which characterize graph searches such as Generic Search,
BFS, DFS, LBFS, LDFS.

I These orderings allow to prove properties on graph searches
(without considering the algorithm itself)

I But also to certify (as for example for BFS and diameter
computations)

I Let us now go a little further with tie-breaking.

Graph Searching is playing with orders

Introduction to graph search

I So far we have considered visiting orderings of the vertices
which characterize graph searches such as Generic Search,
BFS, DFS, LBFS, LDFS.

I These orderings allow to prove properties on graph searches
(without considering the algorithm itself)

I But also to certify (as for example for BFS and diameter
computations)

I Let us now go a little further with tie-breaking.

Graph Searching is playing with orders

Introduction to graph search

I So far we have considered visiting orderings of the vertices
which characterize graph searches such as Generic Search,
BFS, DFS, LBFS, LDFS.

I These orderings allow to prove properties on graph searches
(without considering the algorithm itself)

I But also to certify (as for example for BFS and diameter
computations)

I Let us now go a little further with tie-breaking.

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

Introduction to graph search

Application to Tarjan’s strongly connected components algorithm

End vertices

TBLS, a Tie-Breaking Label Search

Two new searches LEXUP and LEXDOWN with no application

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

Application to Tarjan’s strongly connected components
algorithm

The following lemma captures the recursivity of DFS.

The Factor lemma J. Dusart 2014

Let σ be a DFS-ordering of a directed graph G . Let µ be a factor
of σ, then µ is a legitimate DFS-ordering of the induced subgraph
G (µ).

Proof

Let us consider a triple of vertices (a, b, c) in G (µ) such that :
ac ∈ A(G) and ab /∈ A(G). Using the DFS 4-points conditions it
exists necessarily some vertex d between a and b such that
db ∈ A(G). Since d is between a and b in σ, and µ a factor,
necessarily d ∈ G (µ).

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

Application to Tarjan’s strongly connected components
algorithm

The following lemma captures the recursivity of DFS.

The Factor lemma J. Dusart 2014

Let σ be a DFS-ordering of a directed graph G . Let µ be a factor
of σ, then µ is a legitimate DFS-ordering of the induced subgraph
G (µ).

Proof

Let us consider a triple of vertices (a, b, c) in G (µ) such that :
ac ∈ A(G) and ab /∈ A(G). Using the DFS 4-points conditions it
exists necessarily some vertex d between a and b such that
db ∈ A(G). Since d is between a and b in σ, and µ a factor,
necessarily d ∈ G (µ).

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

DFS(G);
Data: A directed graph G

Result: a DFS-ordering of the vertices σ and the lists of strongly
connected components of G

i ← 1 ;
Result ← ∅ ;
foreach x ∈ V (G) do

Closed(x)← False ; Stack(x) = False
end
foreach x ∈ V (G) do

if Closed(x) = False then
Explore(G , x)

end
end

Algorithm 3: The Tarjan’s Strongly Connected Components

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

Explore(G , x);
Push(x ,Result) ; Stack(x) = True ; Closed(x)← True;
σ(i)← x ; root(x)← i ; i ← i + 1 ;
foreach xy ∈ A(G) do

if Closed(y) = False then
Explore(G , y) ; root(x)← min{root(x), root(y)} ;

end
else

if Stack(y) = True then
root(x)← min{root(x), root(y)}

end
end

end
if root(x) = σ−1(x) then

Pop Result until x included, print these vertices as a list and
update their value in the array Stack to false ;

end

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

In the above algorithm : Result is a stack, Stack is a boolean array
describing if a vertex belongs to Result. σ is the DFS-ordering
yielded by this DFS search.

Definition 1

For an ordering σ of the vertices of G , a flyer is xy ∈ A(G) such
that there exists z ∈ V (G) with x <σ z <σ y .

Definition 2

A vertex x is called a root if during the execution of the algorithm,
when the work is finished at x (i.e. at the end of Explore(G , x)),
root(x) = σ−1(x).

Theorem

Tarjan’s algorithm applied on a directed graph G computes its
strongly connected components.

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

In the above algorithm : Result is a stack, Stack is a boolean array
describing if a vertex belongs to Result. σ is the DFS-ordering
yielded by this DFS search.

Definition 1

For an ordering σ of the vertices of G , a flyer is xy ∈ A(G) such
that there exists z ∈ V (G) with x <σ z <σ y .

Definition 2

A vertex x is called a root if during the execution of the algorithm,
when the work is finished at x (i.e. at the end of Explore(G , x)),
root(x) = σ−1(x).

Theorem

Tarjan’s algorithm applied on a directed graph G computes its
strongly connected components.

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

In the above algorithm : Result is a stack, Stack is a boolean array
describing if a vertex belongs to Result. σ is the DFS-ordering
yielded by this DFS search.

Definition 1

For an ordering σ of the vertices of G , a flyer is xy ∈ A(G) such
that there exists z ∈ V (G) with x <σ z <σ y .

Definition 2

A vertex x is called a root if during the execution of the algorithm,
when the work is finished at x (i.e. at the end of Explore(G , x)),
root(x) = σ−1(x).

Theorem

Tarjan’s algorithm applied on a directed graph G computes its
strongly connected components.

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

The proof
It goes by induction on the size of G . If G is reduced to a vertex z ,
the stack Result contains z which is by default a strongly
connected component.
The proof will rely on σ the DFS-ordering generated by the
execution of Tarjan’s algorithm on a graph G .
Let z be the last root vertex in σ. It always exists at least one such
vertex, since the first vertex of the DFS is necessarily a root. Let us
denote by D(z) the set of descendants of z after z in σ.

I Claim 1 G (z ∪ D(z)) is strongly connected.
It suffices to prove that for every vertex y ∈ D(z) there exists
a path form y to z .
Since y is not a root it admits a successor t previously
considered in σ. If z <σ t we apply the same reasoning on t.
Else t <σ z implies that z cannot be root. So we construct a
path from y that must necessarily end in z .

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

Claim 2 G (z ∪ D(z)) is maximal because it cannot be extended in
σ in both directions.

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

I Claim 3 z ∪ D(z) is a factor of σ.
Else let us consider the closest to z , vertex b such that :
z <σ b <σ t, with t ∈ D(z), b /∈ D(z). Let us consider the
smallest flyer across b. Such an arch is an arc ac with
a, c ∈ D(z) and a <σ b <σ c . using the DFS 4 points
condition it exists d in between a and b in σ, such that :
db ∈ A(G). d cannot belong to D(z) else b would also belong
to D(z). But then b is not the closest to z , a contradiction.
If z is the first element of σ then z ∪ D(z) = V (G) and G is
strongly connected, and all vertices belong to the stack
Result, and therefore Tarjan’s algorithm finds the right
solution in this case.
Else we can apply the factor Lemma , since z ∪ D(z) is a
factor of σ, by induction the algorithm works on G (z ∪ D(z)).

Graph Searching is playing with orders

Application to Tarjan’s strongly connected components algorithm

Let σ′ the restriction of σ to V (G)-z ∪ D(z). It suffices to prove
that σ′ is a legitimate DFS on this graph denoted by G ′.
Consider a triple (a, b, c) ∈ G ′ with a <σ b <σ c , ac ∈ A(G) and
ab /∈ A(G). Using the DFS 4 points condition on G , it exists d in
between a and b in σ, such that : db ∈ A(G). Let us consider the
position of z in σ with respect to this triple. The only interesting
case is :
a <σ z <σ b
if d ∈ z ∪ D(z) then b ∈ z ∪ D(z) which is not possible, therefore
the 4 points condition is satisfied in G ′.
So the proof terminates using induction on G ′.

Graph Searching is playing with orders

End vertices

Introduction to graph search

Application to Tarjan’s strongly connected components algorithm

End vertices

TBLS, a Tie-Breaking Label Search

Two new searches LEXUP and LEXDOWN with no application

Graph Searching is playing with orders

End vertices

End-vertex problem for a search S :
Input : A graph G = (V ,E), and a vertex t.
Question : Is there σ an S-ordering of V such that σ(n) = t ?

Graph Searching is playing with orders

End vertices

Theorem

Given a bipartite graph G and a vertex v of G , it is NP-complete
to decide if there exists an execution of BFS on G such that v is
the end-vertex.

Reduction direct from 3-SAT

Graph Searching is playing with orders

End vertices

For every n ∈ N we define a graph Gn, which has one special
vertex rn called the root. It is constructed recursively as follows :

I G0 is the graph with one vertex r0.

I Gn is constructed from Gn−1 by first adding three vertices :
the new root rn, and its two neighbours yn and yn, that are
also adjacent to rn−1. Finally we attach a path of 2n − 1 new
vertices to yn (respectively yn) and label its end-vertex xn
(respectively xn).

Graph Searching is playing with orders

End vertices

For every n ∈ N we define a graph Gn, which has one special
vertex rn called the root. It is constructed recursively as follows :

I G0 is the graph with one vertex r0.

I Gn is constructed from Gn−1 by first adding three vertices :
the new root rn, and its two neighbours yn and yn, that are
also adjacent to rn−1. Finally we attach a path of 2n − 1 new
vertices to yn (respectively yn) and label its end-vertex xn
(respectively xn).

Graph Searching is playing with orders

End vertices

r2

y2 y2

r1

y1 y1

x2 x1 r0 x1 x2

Figure: The graph G2.

Graph Searching is playing with orders

End vertices

Proposition 1

Gn is a bipartite graph that has (2n + 1)(n + 1) vertices that all
are at distance at most 2n from rn. There are 2n + 1 vertices at
distance exactly 2n from rn, and these are x1, x1, x2, x2, . . . , xn, xn
and r0.

The following proposition is central to the reduction and concerns
the order that we obtain on those 2n + 1 vertices when we do a
BFS starting at the root.

Proposition 2

Consider an order on the vertices of Gn given by an execution of a
BFS starting at rn. For each 1 ≤ i ≤ n at most one of xi and xi is
before r0. Moreover each of the 2n choices of one among xi and xi
for each i, can be obtained as the set of vertices that appear before
r0 for some BFS order of Gn.

Graph Searching is playing with orders

End vertices

Proposition 1

Gn is a bipartite graph that has (2n + 1)(n + 1) vertices that all
are at distance at most 2n from rn. There are 2n + 1 vertices at
distance exactly 2n from rn, and these are x1, x1, x2, x2, . . . , xn, xn
and r0.

The following proposition is central to the reduction and concerns
the order that we obtain on those 2n + 1 vertices when we do a
BFS starting at the root.

Proposition 2

Consider an order on the vertices of Gn given by an execution of a
BFS starting at rn. For each 1 ≤ i ≤ n at most one of xi and xi is
before r0. Moreover each of the 2n choices of one among xi and xi
for each i, can be obtained as the set of vertices that appear before
r0 for some BFS order of Gn.

Graph Searching is playing with orders

End vertices

End of the proof

1. We just add to the previous gadjet, the incidence bipartite
clauses–variables and a pending edge r0t.

2. There is a BFS ending at t iff the SAT instance is satisfiable.

Graph Searching is playing with orders

End vertices

End of the proof

1. We just add to the previous gadjet, the incidence bipartite
clauses–variables and a pending edge r0t.

2. There is a BFS ending at t iff the SAT instance is satisfiable.

Graph Searching is playing with orders

End vertices

End-vertex results BFS LBFS DFS LDFS MNS

All Graphs NPC NPC NPC NPC ?(P)

Bipartite NPC ?(NPC) ?(NPC) ?(NPC) ?(P)

Weakly Chordal NPC NPC NPC NPC ?(P)

Chordal ?(NPC) ?(NPC) NPC ? P

Split P P NPC P P

Str. Chordal Split P P NPC P P

Path Graphs ? ?(P) NPC ? P

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Introduction to graph search

Application to Tarjan’s strongly connected components algorithm

End vertices

TBLS, a Tie-Breaking Label Search

Two new searches LEXUP and LEXDOWN with no application

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

A graph search is an iterative process that chooses at each step a
vertex of the graph and numbers it (from 1 to n). Each vertex is
chosen (also said visited) exactly once (even if the graph is
disconnected). Let us now define a General Tie-Breaking Label
Search (TBLS). It uses labels to decide the next vertex to be
visited ; label(v) is a subset of {1, ..., n}. A TBLS is defined on :

1. A graph G = (V ,E) on which the search is performed ;

2. A strict partial order ≺ over the label-set P(N+) ;

3. An ordering τ of the vertices of V called the tie-break
permutation.

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

TBLS(G ,≺, τ)

foreach v ∈ V do label(v)← ∅;
for i ← 1 to n do

Eligible ← {x ∈ V | x unnumbered and @y ∈ V such that
label(x) ≺ label(y)};
Let v be the leftmost vertex of Eligible according to the ordering
τ ;
σ(v)← i ;
foreach unnumbered vertex w adjacent to v do

label(w)← label(w) ∪ {i};
end

end

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

The ideas of this formalism :

I A graph search just produces a vertex ordering

I Any ordering of the vertices can be used as a tie-break

I Then we can iterate graph searches and study what orderings
can be obtained

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

The ideas of this formalism :

I A graph search just produces a vertex ordering

I Any ordering of the vertices can be used as a tie-break

I Then we can iterate graph searches and study what orderings
can be obtained

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

The ideas of this formalism :

I A graph search just produces a vertex ordering

I Any ordering of the vertices can be used as a tie-break

I Then we can iterate graph searches and study what orderings
can be obtained

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

With this formalism, in order to specify a particular search we just
need to specify ≺, the partial order relation on the label sets for
that search. The choice of permutation τ is useful in some
situations described below ; otherwise, we consider the orderings
output by an arbitrary choice of τ thanks to the following
definition :

Definition

Let ≺ be some ordering over P(N+). Then σ is a TBLS ordering
for G and ≺ if there exists τ such that σ = TBLS(G ,≺, τ).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Usual conventions

N+ represents the set of integers strictly greater than 0 and N+
p

represents the set of integers strictly greater than 0 and less than
p. P(N+) denotes the power-set of N+ and Sn denotes the set of
all permutations of {1, ..., n}.
We always use the notation < for the usual strict (i.e., irreflexive)
order between integers, and ≺ for a partial strict order between
elements from P(N+) (or from another set when specified).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

So far in the model we play with :

a number (label) associated to each vertex
a set a labels associated to each unnumbered vertex
and some partial order ≺ between sets of labels

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

A useful property

Theorem

A graph G , a search rule ≺, σ an ordering, then :
There exists τ such that σ = TBLS(G ,≺, τ) iff
σ = TBLS(G ,≺, σ)

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Generic Search

We define A ≺gen B if and only if A = ∅ and B 6= ∅ and let σ be a
permutation of V . The following conditions are equivalent :

1. σ is a generic search ordering of V (a TBLS using ≺gen).

2. For every triple of vertices a, b, c such that a <σ b <σ c ,
a ∈ N(c)− N(b) there exists d ∈ N(b) such that d <σ b.

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Ad-hoc min and max operators

For A ∈ P(N+),

I let umin(A) be :
if A = ∅ then umin(A) =∞ else umin(A) = min{i |i ∈ A} ;

I and umax(A) be :
if A = ∅ then umax(A) = 0 else umax(A) = max{i |i ∈ A}.

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Ad-hoc min and max operators

For A ∈ P(N+),

I let umin(A) be :
if A = ∅ then umin(A) =∞ else umin(A) = min{i |i ∈ A} ;

I and umax(A) be :
if A = ∅ then umax(A) = 0 else umax(A) = max{i |i ∈ A}.

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

DFS

We define A ≺DFS B if and only if umax(A) < umax(B). Let σ be
a permutation of V . The following conditions are equivalent :

1. σ is a DFS ordering (a TBLS using ≺DFS).

2. for every triple of vertices a, b, c such that a <σ b <σ c,
a ∈ N(c)− N(b) there exists d ∈ N(b) such that
a <σ d <σ b.

3. for every triple of vertices a, b, c such that a <σ b <σ c , and
a is the rightmost vertex of N(b) ∪ N(c) in σ, we have
a ∈ N(b).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

BFS

We define A ≺BFS B if and only if umin(A) > umin(B). Let σ be a
permutation of V . The following conditions are equivalent :

1. σ is a BFS ordering (a TBLS using ≺BFS).

2. for every triple a, b, c ∈ V such that a <σ b <σ c ,
a ∈ N(c)− N(b), there exists d such that d ∈ N(b) and
d <σ a.

3. for every triple a, b, c ∈ V such that a <σ b <σ c and a is the
leftmost vertex of N(b) ∪ N(c) in σ, we have a ∈ N(b).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

LDFS

We define A ≺LDFS B if and only if umax(A−B) < umax(B −A).
Let σ be a permutation of V . The following conditions are
equivalent :

1. σ is a LDFS ordering (a TBLS using ≺LDFS)

2. for every triple a, b, c ∈ V such that a <σ b <σ c ,
a ∈ N(c)−N(b), there exists a <σ d <σ b, d ∈ N(b)−N(c).

3. for every triple a, b, c ∈ V such that a <σ b <σ c and a is the
rightmost vertex in N(b)4 N(c) in σ, a ∈ N(b)− N(c).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

LBFS

We define A ≺LBFS B if and only if umin(B − A) < umin(A− B).
Let σ be a permutation of V . The following conditions are
equivalent :

1. σ is a LBFS ordering (a TBLS using ≺LBFS)

2. for every triple a, b, c ∈ V such that a <σ b <σ c ,
a ∈ N(c)− N(b), there exists d <σ a, d ∈ N(b)− N(c).

3. for every triple a, b, c ∈ V such that a <σ b <σ c and a is the
leftmost vertex of N(b)4 N(c) in σ, then a ∈ N(b)− N(c).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

LDFS

We define A ≺LDFS B if and only if umax(A−B) < umax(B −A).
Let σ be a permutation of V . The following conditions are
equivalent :

1. σ is a LDFS ordering (a TBLS using ≺LDFS)

2. for every triple a, b, c ∈ V such that a <σ b <σ c ,
a ∈ N(c)−N(b), there exists a <σ d <σ b, d ∈ N(b)−N(c).

3. for every triple a, b, c ∈ V such that a <σ b <σ c and a is the
rightmost vertex in N(b)4 N(c) in σ, a ∈ N(b)− N(c).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Consequences

I In our model only ≺ matters for a graph search.

I Nice mathematical duality min-max between BFS and DFS
(resp. LBFS and LDFS).

I A stack (resp. a queue) is a data structure to manage a
Maximum (resp. Minimum) current value.

I But which data structures to implement max(A \ B) or
min(A \ B) ?

I New characterizations of their orderings

I Prove results just using the orderings (without looking at all
at the implementation).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Consequences

I In our model only ≺ matters for a graph search.

I Nice mathematical duality min-max between BFS and DFS
(resp. LBFS and LDFS).

I A stack (resp. a queue) is a data structure to manage a
Maximum (resp. Minimum) current value.

I But which data structures to implement max(A \ B) or
min(A \ B) ?

I New characterizations of their orderings

I Prove results just using the orderings (without looking at all
at the implementation).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Consequences

I In our model only ≺ matters for a graph search.

I Nice mathematical duality min-max between BFS and DFS
(resp. LBFS and LDFS).

I A stack (resp. a queue) is a data structure to manage a
Maximum (resp. Minimum) current value.

I But which data structures to implement max(A \ B) or
min(A \ B) ?

I New characterizations of their orderings

I Prove results just using the orderings (without looking at all
at the implementation).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Consequences

I In our model only ≺ matters for a graph search.

I Nice mathematical duality min-max between BFS and DFS
(resp. LBFS and LDFS).

I A stack (resp. a queue) is a data structure to manage a
Maximum (resp. Minimum) current value.

I But which data structures to implement max(A \ B) or
min(A \ B) ?

I New characterizations of their orderings

I Prove results just using the orderings (without looking at all
at the implementation).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Consequences

I In our model only ≺ matters for a graph search.

I Nice mathematical duality min-max between BFS and DFS
(resp. LBFS and LDFS).

I A stack (resp. a queue) is a data structure to manage a
Maximum (resp. Minimum) current value.

I But which data structures to implement max(A \ B) or
min(A \ B) ?

I New characterizations of their orderings

I Prove results just using the orderings (without looking at all
at the implementation).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Consequences

I In our model only ≺ matters for a graph search.

I Nice mathematical duality min-max between BFS and DFS
(resp. LBFS and LDFS).

I A stack (resp. a queue) is a data structure to manage a
Maximum (resp. Minimum) current value.

I But which data structures to implement max(A \ B) or
min(A \ B) ?

I New characterizations of their orderings

I Prove results just using the orderings (without looking at all
at the implementation).

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Repeated LBFS+ in this new model

Data: G an undirected graph, σ0 a permutation on V (G)

Result: an ordering σ|V (G)|

for i = 1 to |V (G)| do
σi ← TBLS(G ,≺LBFS , σ

d
i−1);

end
Output σ|V (G)|;

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

A semi-lattice structure

Definition

For two TBLS searches S , S ′, we say that S ′ is an extension of S
(denoted by S � S ′) if and only if every S ′-ordering σ also is an
S-ordering. a

a. This definition is consistent with the usual extension ordering used in partial
order theory ; in particular S � S ′ means that the set of comparabilities in S is
included in those of S ′.

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Definition

For two partial orders ≺P ,≺Q on the same ground set X , we say
that P extends Q if ∀x , y ∈ X , x ≺Q y implies x ≺P y .

Theorem

Let S , S ′ be two TBLS. S ′ is an extension of S if and only if ≺S ′

is an extension of ≺S .

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

LBFS LDFSMCS

MNSBFS DFS

GenericSearch

Figure: Summary of the heredity relationships. An arc from Search S to
search S ′ means that S ′ extends S .

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Clearly being an extension is a transitive relation. In fact �
structures the TBLS graph searches as ∧-semilattice. The 0 search
in this semi-lattice, denoted by the null search or Snull , corresponds
to the empty ordering relation (no comparable pairs). At every step
of Snull the Eligible set contains all unnumbered vertices. Therefore
for every τ , TBLS(G ,≺Snull , τ) = τ and so any total ordering of
the vertices can be produced by Snull .

The infimum between two searches S , S ′ can be defined as
follows : For every pair of label sets A,B, we define : A ≺S∧S ′ B if
and only if A ≺S B and A ≺S ′ B.

Graph Searching is playing with orders

TBLS, a Tie-Breaking Label Search

Exercise

Show that Layered Search does not belong to the TBLS formalism.
How to include it ?

Graph Searching is playing with orders

Two new searches LEXUP and LEXDOWN with no application

Introduction to graph search

Application to Tarjan’s strongly connected components algorithm

End vertices

TBLS, a Tie-Breaking Label Search

Two new searches LEXUP and LEXDOWN with no application

Graph Searching is playing with orders

Two new searches LEXUP and LEXDOWN with no application

LEXUP

Data: a graph G = (V ,E) and a start vertex s;

Result: an ordering σ of V ;

Assign the label ∅ to all vertices ;
label(s)← {n};
for i ← 1 à n do

Pick an unnumbered vertex v with lexicographically largest label;
σ(i)← v ;
foreach unnumbered vertex w adjacent to v do

label(w)← label(w).{i};
end

end

Algorithm 4: LEXUP

Graph Searching is playing with orders

Two new searches LEXUP and LEXDOWN with no application

LEXDOWN

Data: a graph G = (V ,E) and a start vertex s;

Result: an ordering σ of V ;

Assign the label ∅ to all vertices ;
label(s)← {n};
for i ← n à 1 do

Pick an unnumbered vertex v with lexicographically largest label;
σ(i)← v ;
foreach unnumbered vertex w adjacent to v do

label(w)← {i}.label(w);
end

end

Algorithm 5: LEXDOWN

Graph Searching is playing with orders

Two new searches LEXUP and LEXDOWN with no application

LBFS : a, b, c , d , e
LDFS : a, b, c , e, d
LEXUP : a, b, e, c , d Hamilton path ! ! !
LEXDOWN : a, b, d , c , e
All different orderings in this simple example.
Potential application to AI discovery algorithms.

Graph Searching is playing with orders

Two new searches LEXUP and LEXDOWN with no application

Perspectives

I Use this tie-break model to prove properties of graph searches

I Understanding the greedy aspects of LBFS and LDFS on
cocomparability graphs.

I More precisely : matroidal aspects for LDFS and
anti-matroidal for LBFS.

I Study iterations of graph searches and their cycles.

I Find applications of 2 new lexicographic searches (Lexup,
Lexdown) which came by symmetry on the algorithms.

Graph Searching is playing with orders

Two new searches LEXUP and LEXDOWN with no application

Perspectives

I Use this tie-break model to prove properties of graph searches

I Understanding the greedy aspects of LBFS and LDFS on
cocomparability graphs.

I More precisely : matroidal aspects for LDFS and
anti-matroidal for LBFS.

I Study iterations of graph searches and their cycles.

I Find applications of 2 new lexicographic searches (Lexup,
Lexdown) which came by symmetry on the algorithms.

Graph Searching is playing with orders

Two new searches LEXUP and LEXDOWN with no application

Perspectives

I Use this tie-break model to prove properties of graph searches

I Understanding the greedy aspects of LBFS and LDFS on
cocomparability graphs.

I More precisely : matroidal aspects for LDFS and
anti-matroidal for LBFS.

I Study iterations of graph searches and their cycles.

I Find applications of 2 new lexicographic searches (Lexup,
Lexdown) which came by symmetry on the algorithms.

Graph Searching is playing with orders

Two new searches LEXUP and LEXDOWN with no application

Perspectives

I Use this tie-break model to prove properties of graph searches

I Understanding the greedy aspects of LBFS and LDFS on
cocomparability graphs.

I More precisely : matroidal aspects for LDFS and
anti-matroidal for LBFS.

I Study iterations of graph searches and their cycles.

I Find applications of 2 new lexicographic searches (Lexup,
Lexdown) which came by symmetry on the algorithms.

Graph Searching is playing with orders

Two new searches LEXUP and LEXDOWN with no application

Perspectives

I Use this tie-break model to prove properties of graph searches

I Understanding the greedy aspects of LBFS and LDFS on
cocomparability graphs.

I More precisely : matroidal aspects for LDFS and
anti-matroidal for LBFS.

I Study iterations of graph searches and their cycles.

I Find applications of 2 new lexicographic searches (Lexup,
Lexdown) which came by symmetry on the algorithms.

Graph Searching is playing with orders

Two new searches LEXUP and LEXDOWN with no application

I Influence of the tie-break rule on the end-vertex problem
Pierre Charbit, Michel Habib, Antoine Mamcarz
Discrete Mathematics & Theoretical Computer Science, Vol
16, No 2 (2014).

http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/

article/view/2519

I TBLS : A tie-break model for graph search
with Derek Corneil, Jérémie Dusart, Michel Habib, Antoine
Mamcarz and Fabien de Montgolfier
à parâıtre dans Discrete Applied Mathematics.

I Informations about LEXUP and LEXDOWN in J. Dusart’s
PhD, june 2014.

http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2519
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2519

	Introduction to graph search
	Application to Tarjan's strongly connected components algorithm
	End vertices
	TBLS, a Tie-Breaking Label Search
	Two new searches LEXUP and LEXDOWN with no application

