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Abstract. In this paper we introduce a discrete version of the online
traveling salesman problem (DOLTSP). We represent the metric space
using a weighted graph, where the server is allowed to modify its route
only at the vertices. This limitation directly affects the capacity of the
server to react and increases the risk related to each decision. We prove
lower bounds on the performance of deterministic online algorithms in
different scenarios of DOLTSP, and we present distinct algorithms for
the problem, some of them achieving the best possible performance. We
measure the performance of the algorithms using competitive analysis,
the most widely accepted method for evaluating online algorithms. Be-
sides, we perform an empirical simulation on paths, generating a signif-
icant set of instances and measuring the quality of the solutions given
by each algorithm. Our experiments show that algorithms with the best
competitive ratio do not have the best performance in practice.
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1 Introduction

Numerous variations of the Vehicle Routing Problem (VRP) have been de-
fined [1–4]. Many of these variations assume that the input is completely known
when the solution is computed. However, there are many situations in which
decisions must be made based on partial information, and the solution must be
built or even executed before the input is completely known, what is usually
known as online optimization [5, 6]. Think for example of a salesman with a
cellular phone, or a fleet of vehicles equipped with radios that must collect and
deliver packages at different locations, and many other transportation problems
in which the itinerary can be modified during its execution. In the online versions
of VRPs, a sequence of requests is posed to an algorithm that has to decide how
to move the servers to satisfy the requests without knowledge of future requests.

Previous works about online VRPs [7–10, 1, 11] have considered that the
servers move in a continuous metric space. In this scenario the servers can change
direction at any time while they are moving from one point to another. However,
? Research supported in part by UBACyT projects X143 and X212, and by ANPCyT
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in some applications this may not be the case, and it is preferable to model the
problem using a discrete metric space. For example, if a server is on a road net-
work of freeways and a request arrives while the server is moving between two
exits, the server has to proceed to the next exit before being able to change its
plan. Online routing on discrete metric spaces appears a priori to be “harder”
than the continuous counterpart, as in the former there are less opportunities to
revise the plan, and thus the risk associated to each decision may be higher.

In this paper we consider the online version of the Traveling Salesman Prob-
lem (TSP) on discrete metric spaces. We call this variant Discrete Online Trav-
eling Salesman Problem (DOLTSP). In an instance of DOLTSP, a server that
travels at unit speed must visit the vertices of a graph in order to satisfy requests
that are presented along time, finishing the service as early as possible. As in
previous works about online routing, we consider two versions of the problem:
one Homing (HDOLTSP), in which the journey of the server must finish at the
same vertex where it starts, and one Nomadic (NDOLTSP), in which it can
finish anywhere in the graph. Note that the associated offline problems are the
same as in the continuous case, namely the Vehicle Routing Problem with release
times [12].

We propose deterministic online algorithms for the two versions of DOLTSP,
and we measure their performance using competitive analysis [13]. In this widely
used framework the cost of an algorithm is compared to that of an optimal offline
adversary that knows the whole input in advance. We consider two types of ad-
versaries: a standard adversary with unrestricted power, and a fair adversary [10]
that must keep the server inside the region where requests have already been
presented. We analyze two classes of online algorithms: zealous algorithms [10]
that keep working while there is something to do, and cautious algorithms that
may halt the server even when there is pending work.

Most of our results hold on any (non trivial) graph. However, sometimes we
focus our attention on paths, i.e. graphs in which the server can only move in
two opposite directions which we refer as “left” (or negative) and “right” (or
positive). Moreover, certain results are only valid for halfpaths, that are paths
where the starting vertex is the leftmost one. Notice that paths and halfpaths
are the discrete analogons of the real line and halfline, respectively. This family
of graphs allows to capture many interesting applications, like the previously
mentioned of a highway, an elevator, a stacker-crane moving on a track, or the
radial movement of the read/write head in a hard disc drive.

A summary of our theoretical results is given in Table 1, where lower bounds
that hold on any graph appear in boldface. The two lower bounds not in boldface
are valid on halfpaths with a certain distribution of vertices (and then also
on paths and trees). We found that, in general, DOLTSP is harder than its
continuous counterpart. As expected, HDOLTSP is easier than NDOLTSP, the
fair adversary is weaker than the standard one, and zealous algorithms are weaker
than cautious ones.1

1 In the Online Asymmetric Traveling Salesman Problem (OL-ATSP) a server moves in
a not necessarily symmetric space [8]. This problem can be viewed as a generalization



Table 1. Summary of theoretical results

zealous cautious
lower upper bound lower upper bound
bound path general bound halfpath general

Homing fair 2 2 3 ≈ 1.618 ≈ 1.618 ≈ 2.618 [8]
standard 2 2 3 ≈ 1.707 ≈ 1.707 ≈ 2.618 [8]

Nomadic fair 3 3 3 ≈ 1.839 2 (unknown)
standard 3 3 3 2 2 (unknown)

Besides, we perform empirical simulations on paths. We find that in practice
the zealous strategies we devised are better than the cautious ones. Nevertheless,
the empirical studies also ratify the idea that waiting is profitable in a worst case
sense.

2 Basic Definitions and Notation

2.1 DOLTSP

The input of DOLTSP consists of a graph G = (V,E) with a positive length
associated to each edge e ∈ E, a distinguished vertex o ∈ V (the origin), and
a sequence σ of requests ri = (ti, vi), where vi ∈ V , and ti ∈ IR≥0 is a release
time representing the moment at which ri is presented. These moments form an
ordered sequence in the sense that ti ≤ tj if i < j. At time 0 a server is located
at the origin o, and must serve all requests. With this purpose it has to move
through the edges of E at unit speed and visit each vertex vi at some moment not
earlier than ti. The server cannot change direction while traversing and edge. We
consider two variants of DOLTSP: in Homing DOLTSP (HDOLTSP) the server
must return to the origin after serving all requests, while in Nomadic DOLTSP
(NDOLTSP) the journey can finish anywhere.

For every pair of vertices v, w ∈ V we denote with d(v, w) = d(w, v) the
distance between them, that is, the length of a shortest path joining them. We
denote with v̄ the distance of v to the origin o. We assume that the graph G is not
trivial (it has at least one vertex apart from o), and that all lengths associated
to edges satisfy the triangle inequality.

An algorithm for DOLTSP must decide the movements of the server with the
goal of ending its work as soon as possible. An online algorithm has to execute

of DOLTSP, by replacing each edge of the graph by two directed arcs of the same
length, and considering a particular notion of distance (the cost of changing direction
while traversing an arc from x to y, is the cost of reaching y plus the cost of going
back to x). Thus, the algorithms presented in [8] mantain their performance when
they are used for DOLTSP. However, we obtain strictly better performances on paths
and for NDOLTSP.



each movement without knowledge of unreleased requests. On the contrary, an
offline algorithm can decide based on the whole sequence of requests.

2.2 Competitive Analysis and Adversaries

Competitive analysis [13, 14] is a type of worst case analysis where the perfor-
mance of an algorithm for a problem is compared to that of an optimal offline
algorithm. The measure of performance used in competitive analysis is the com-
petitive ratio. We say that an algorithm ALG for DOLTSP is ρ-competitive if and
only if for every sequence of request σ we have CALG(σ) ≤ ρ · COPT(σ), where
CALG(σ) is the cost of ALG for σ, and COPT(σ) is the cost of an optimal offline
algorithm that knows the whole input sequence in advance.

It is usually useful to see competitive analysis as a game between an online
player and an offline adversary. The former tries to find a good solution for a
sequence of requests generated by the latter, who knows the online strategy and
tries to maximize the ratio between both costs. Thus, we use the terms optimal
offline algorithm and adversary interchangeably.

Competitive analysis is sometimes criticized for its excessive pessimism [15].
With the aim of attenuating this situation, different alternative measures have
been proposed. One of them is known as comparative analysis, in which the
adversary is restricted in some sense. For online routing problems, a form of
comparative analysis consists of using, instead of a standard, unrestricted ad-
versary, a fair adversary that is required to move the server inside the region
where requests have already been presented. Fair adversaries have been originally
proposed in [10] for (continuous) OLTSP. For DOLTSP we define this class of
adversaries as follows. At any given moment t, the fair region is the closure
under shortest paths of the set of vertices formed by the origin and the vertices
where requests have been presented. An adversary is fair if at every moment its
server is in the subgraph induced by the fair region at that moment.

3 Zealous Algorithms

In this section we propose and analyze simple and intuitive online algorithms
for DOLTSP. As we will see, these algorithms are members of a natural class of
algorithms that keep working as long as there is something to do.

The first online algorithm is known as Replan (REP). This algorithm was well
studied in the context of distinct online optimization problems, and it consists
of adjusting the solution each time a new request is presented. In the case of
DOLTSP, this means computing a new itinerary that allows the server to satisfy
all pending requests in the least possible time. If new requests are presented
when the server is not at a vertex of the graph, the new route is computed as
soon as the server reaches a vertex.

We will analyze the performance of REP for the particular case of paths. For
doing that, we need to introduce the concept of extreme vertices.



Definition 1. Given an instance of DOLTSP on a path, at any given moment
consider the set S of vertices that REP has yet to visit. This set contains the
vertices of unserved requests, and in HDOLTSP includes also the origin. We
call left (resp. right) extreme the leftmost (resp. rightmost) vertex of S.

Note that for HDOLTSP on paths, the left (resp. right) extreme is located
in the left (resp. right) halfpath. However, one or both extremes could be the
origin. This implies that at least one of the extremes is in the same halfpath
where the server is. Among the extremes that are in the same halfpath that the
server, let F be the extreme that is farthest from the origin. It is easy to see
that for HDOLTSP on paths the route computed by REP is as follows: move to
extreme F , then to the other extreme, and finally to the origin.

In NDOLTSP we cannot assume any order between the extremes and the
origin. However, the route computed by REP is simpler: move to the extreme
that is nearest to the server, and then to the other extreme.

Knowing the routes computed by REP for DOLTSP on paths, we are ready to
analyze its competitiveness. The following results show that REP is 2-competitive
for HDOLTSP and 3-competitive for NDOLTSP. This is valid on any path (even
a halfpath) against both fair and standard adversaries.

Theorem 2. Algorithm REP is 2-competitive for HDOLTSP on any path against
both fair and standard adversaries.

Proof. Let σ be any sequence of requests. Let L and R be respectively the
leftmost and rightmost vertices that must be visited to serve all the requests of
σ, including the origin. Clearly, at any moment, the left and right extremes are
located between L and R. More precisely, the left extreme is between L and the
origin, and the right extreme is between the origin and R. Besides, the server
of REP is always between L and R, because it only moves to serve a request or
to return to the origin. Let T be the moment in which the last request of σ is
presented. Two situations can occur.

1. At time T , the online server is at a vertex or traversing an edge that moves
it away from the origin. To complete its work, the server will first move to
an extreme, then to the other extreme, and finally to the origin, ending at
most at time T + 2L̄ + 2R̄. Since T and 2L̄ + 2R̄ are lower bounds to the
optimal offline cost, we have

CREP(σ)
COPT(σ)

≤ T

COPT(σ)
+

2L̄+ 2R̄
COPT(σ)

≤ 2 .

2. At time T , the online server is traversing an edge that brings it nearer to
the origin. Let v 6= o be the vertex where that move starts. We know that v
is between L and R. There are two possibilities.
(a) After the server leaves v, no new request is presented at v or at any other

vertex in the same halfpath farther away from the origin than v. As in
the previous situation, the server will first move to an extreme, then to
the other extreme, and finally to the origin, with a total cost of at most
T + 2L̄+ 2R̄. And again, this is at most twice the optimal offline cost.



(b) The last situation is when at least one of those requests is presented. Let
r be one of them, presented at time t at vertex x. Clearly, the length
of the edge that the online server is traversing is at most x̄ and, as we
said, the movement started before time t. Then, before time t + x̄ the
server arrives to a vertex and can replan its tour, ending its job at most
at time t+ x̄+ 2L̄+ 2R̄. Since the optimal offline cost is lower bounded
by t+ x̄ and by 2L̄+ 2R̄, we obtain

CREP(σ)
COPT(σ)

≤ t+ x̄

COPT(σ)
+

2L̄+ 2R̄
COPT(σ)

≤ 2 .

ut

Theorem 3. Algorithm REP is 3-competitive for NDOLTSP on any path against
both fair and standard adversaries.

Proof. Let σ be any sequence of requests. Let L, R and T be as in the previous
proof, and note that also in NDOLTSP the server of REP is always between L and
R. Until time T the cost of the algorithm is obviously T . Consider the route of
the server from this moment on. If the server is traversing and edge, it completes
the movement, and then the server moves to its nearest extreme, with a total
cost of at most d(L,R), that is, the distance between L and R. To complete its
job, the server moves to the other extreme, again with a cost of at most d(L,R).
Since T and d(L,R) are lower bounds for the optimal offline cost, we have

CREP(σ)
COPT(σ)

≤ T

COPT(σ)
+

2d(L,R)
COPT(σ)

≤ 3 .

ut

Our second online algorithm for DOLTSP is called Zig-Zag (ZZG), and it is
defined only on paths. The algorithm repeatedly moves the server to the left and
to the right while there are pending requests in each direction. In HDOLTSP,
while there are no pending requests, ZZG moves the server towards the origin.

The following results show that ZZG can achieve the same competitive ratios
we obtained for REP. The proofs are very similar to those of Theorem 2 and
Theorem 3.

Theorem 4. Algorithm ZZG is 2-competitive for HDOLTSP on any path against
both fair and standard adversaries.

Theorem 5. Algorithm ZZG is 3-competitive for NDOLTSP on any path against
both fair and standard adversaries.

Our last online algorithm for DOLTSP is called Delayed Replan (DREP), and
it is very similar to REP. The only difference is that when a new request is
presented, DREP delays the computation of a new optimal tour until the server
is at the origin or it has just served a request. This implies that at any given
moment the server of DREP is on a shortest path from x to y, with x and y
being the origin or vertices where requests have been presented. According to the
following results, DREP is 3-competitive on any graph, in all versions of DOLTSP.



Theorem 6. Algorithm DREP is 3-competitive for HDOLTSP on any graph against
both fair and standard adversaries.

Proof. Let σ be any sequence of requests, and let T be the moment in which the
last request is presented. WLOG, assume that at time T the server of DREP is
on a shortest path from x to y, with x and y being the origin or vertices where
requests have been presented. Once the server reaches y, it will follow an optimal
tour that serves all the pending requests ending at the origin. Since the server
can always go from y to the origin and then follow an optimal offline tour for
σ, the cost of the last tour of DREP is at most ȳ + COPT(σ). Besides, the server
of any algorithm must visit x and y, and return to the origin, which implies
ȳ + d(x, y) ≤ COPT(σ). Putting all the above things together we obtain

CDREP(σ)
COPT(σ)

≤ T + d(x, y) + ȳ + COPT(σ)
COPT(σ)

≤ 3 .

ut

Theorem 7. Algorithm DREP is 3-competitive for NDOLTSP on any graph against
both fair and standard adversaries.

Proof. Let σ, T , x and y be as in the previous proof. Let a be the ending vertex of
an optimal offline tour for σ. Once the server reaches y, it will follow an optimal
tour that serves all the pending requests. Since the server can always go from y
to either the origin or a, and then follow an optimal offline tour for σ, the cost
of the last tour of DREP is at most min(ȳ, d(y, a)) +COPT(σ). Finally, the server
of any algorithm must visit x and y, being d(x, y) + d(y, a) ≤ COPT(σ) if OPT
goes first to x, and ȳ + d(y, x) ≤ COPT(σ) otherwise. Therefore we have

CDREP(σ)
COPT(σ)

≤ T + d(x, y) + [min(ȳ, d(y, a)) + COPT(σ)]
COPT(σ)

≤ 3 .

ut

Algorithms REP, ZZG and DREP are members of a very natural class of algo-
rithms, namely zealous algorithms. The idea behind them is simple: whenever
there is pending work, do it without wasting time. Zealous algorithms were in-
troduced in [10] for (continuous) OLTSP. As mentioned in that work, a formal
definition of zealous algorithms requires some care. This is particularly true for
DOLTSP because the server can change direction only at the vertices.

Definition 8. An online algorithm for DOLTSP is called zealous if and only if
each time the server is at any vertex, the following conditions are met.

1. If there are pending requests, the server moves to serve one of them or to
the origin using a shortest path.

2. In HDOLTSP, if there are no pending requests, the server moves to the origin
using a shortest path.



3. If the server arrived to the vertex while traveling to another one, it can change
the planned tour only if a new request has been presented after leaving the
previous vertex in the route.

Now we have a precise description of zealous online algorithms for DOLTSP,
we are able to prove lower bounds on their competitiveness. Our lower bounds
are valid on any graph against both fair and standard adversaries.

Theorem 9. No zealous online algorithm for HDOLTSP on any graph is better
than 2-competitive against neither fair nor standard adversaries.

Proof. Let x be the closest vertex to the origin. At time 0 request r1 is presented
at vertex x. Since the online algorithm is zealous, it starts moving the server to
x immediately. Once r1 is served at time x̄, there are no pending requests, so
the server starts moving to the origin. At this moment request r2 is presented
again at vertex x, but the server must arrive to the origin before it can return
to x. Once r2 is satisfied, the server goes again to the origin, with a total cost of
at least 4x̄. The adversary can serve both requests at time x̄ moving its server
only once to x, and then returning it to the origin, with a total cost of at most
2x̄, which proves the claim. ut

Theorem 10. No zealous online algorithm for NDOLTSP on any graph is better
than 3-competitive against neither fair nor standard adversaries.

Proof. Let x be the closest vertex to the origin. At time 0 request r1 is presented
at vertex x, and the zealous algorithm starts moving its server to x immediately.
At this moment request r2 is presented at the origin, but the server must com-
plete its movement to x (at time x̄), and then it starts returning to the origin.
At this moment request r3 is presented at vertex x, but the server must reach
the origin (at time 2x̄), and then it goes again to x, with a total cost of 3x̄. The
adversary can end its job at time x̄, serving r2 at time 0 at the origin, and the
other requests at time x̄ at vertex x, which completes the proof. ut

Note that in most of the cases our zealous algorithms REP, ZZG and DREP
achieve competitive ratios coincident with the lower bounds we have just pre-
sented. More precisely, REP and ZZG are optimal zealous algorithms for DOLTSP
on paths, while DREP is optimal for the Nomadic problem on any graph. This
implies that in general the competitiveness achievable by zealous algorithms for
DOLTSP does not depend on the type of adversary: the lower bounds of Theo-
rem 9 and Theorem 10 are the same against both fair and standard adversaries,
and those lower bounds are achieved in most of the cases.

Another interesting observation is that HDOLTSP is easier than NDOLTSP,
at least on paths, since optimal zealous algorithms for HDOLTSP on paths are
2-competitive, while for NDOLTSP we have 3-competitive optimal algorithms.
This is not surprising, if we consider that online algorithms for HDOLTSP have
an extra bit of information: the server must always end at the origin.

In [8] it was proved that a zealous algorithm called Plan At Home is 3-
competitive for (continuous) Homing OL-ATSP. Since OL-ATSP can be viewed



as a generalization of DOLTSP, that result can be applied to our problem, achiev-
ing the same upper bound as Theorem 6.

4 General Lower Bounds

Lower bounds shown in Sect. 3 use the fact that the online algorithms are zealous.
In this section we remove this restriction and present lower bounds valid for any
online algorithm for DOLTSP. Some of the lower bounds hold on any graph,
while others need a special distribution of the vertices.

We will start with HDOLTSP (Theorem 11 and Theorem 12), and then we
will consider NDOLTSP (Theorem 13 and Theorem 14).

Theorem 11. No online algorithm for HDOLTSP on any graph is better than
ρ-competitive against a fair adversary, with ρ = 1+

√
5

2 ≈ 1.618.

Proof. Let x be the closest vertex to the origin. At time 0 request r1 is presented
at vertex x. The online server must visit x and return to the origin at a certain
moment, because we are in the Homing problem. Let τ ≥ x̄ be the moment in
which the online server starts moving to the origin after serving r1. If τ+x̄ ≥ 2x̄ρ,
no more requests are presented. In this case the online server arrives to the origin
not before time τ + x̄, while the adversary can move its server to x and return
it to the origin at time 2x̄, so we have

CALG(σ)
COPT(σ)

≥ τ + x̄

2x̄
≥ 2x̄ρ

2x̄
= ρ .

On the other hand, if τ + x̄ < 2x̄ρ, a new request r2 is presented at time τ
at vertex x. In this situation the adversary can serve both requests at time τ ,
with a total cost of at most τ + x̄. The online cost is at least τ + 3x̄, because
when the online server reaches the origin after serving r1, it must visit again x
and return again to the origin. Therefore we have

CALG(σ)
COPT(σ)

≥ τ + 3x̄
τ + x̄

= 1 +
2x̄
τ + x̄

> 1 +
2x̄
2x̄ρ

= 1 +
1
ρ

= ρ .

ut

Theorem 12. There exists a family of halfpaths where no online algorithm for
HDOLTSP is better than ρ-competitive against a standard adversary, with ρ =
2+
√

2
2 ≈ 1.707.

Theorem 13. No online algorithm for NDOLTSP on any graph is better than ρ-

competitive against a fair adversary, with ρ = 1+
3
√

19−3
√

33 +
3
√

19+3
√

33
3 ≈ 1.839.

Proof. Let x be the closest vertex to the origin. At time 0 request r1 is presented
at vertex x. Let τ1 ≥ 0 be the moment in which the online server leaves the origin.
If τ1 + x̄ ≥ ρx̄, the sequence of requests ends. The online server arrives to x not



before time τ1 + x̄, while the adversary can reach the vertex at time x̄, and then
we have

CALG(σ)
COPT(σ)

≥ τ1 + x̄

x̄
≥ ρx̄

x̄
= ρ .

On the contrary, if τ1 + x̄ < ρx̄, request r2 is presented at time τ1 at the
origin. Let τ2 ≥ τ1 + x̄ be the moment in which the online server starts moving
to the origin for serving r2. If τ2 + x̄ ≥ ρ(τ1 + x̄), no more requests are presented.
In this case the cost of the online algorithm is at least τ2 + x̄, because its server
must arrive to the origin. Since the adversary can wait at the origin until time
τ1 for serving r2, and then move to x for serving r1, we obtain

CALG(σ)
COPT(σ)

≥ τ2 + x̄

τ1 + x̄
≥ ρ(τ1 + x̄)

τ1 + x̄
= ρ .

Finally, if τ1 + x̄ < ρx̄ and τ2 + x̄ < ρ(τ1 + x̄), request r3 is presented at time
τ2 at vertex x. In this situation the online cost is at least τ2 + 2x̄, because the
server must visit x after it arrives to the origin. Once again the adversary can
wait at the origin until time τ1 for serving r2, and then move to x for serving
r1, ending its job at time τ2 when r3 is presented. Therefore we have

CALG(σ)
COPT(σ)

≥ τ2 + 2x̄
τ2

> 1 +
2x̄

ρ(τ1 + x̄)− x̄
> 1 +

2x̄
ρ2x̄− x̄

= 1 +
2

ρ2 − 1
= ρ .

ut

Theorem 14. There exists a family of paths where no online algorithm for
NDOLTSP is better than 2-competitive against a standard adversary.

Proof. Consider a path with at least two vertices x > 0 and −x. WLOG, assume
that at time x̄ the online server is in the left halfpath. At that moment, a single
request at vertex x is presented. The online cost is at least 2x̄, while the adversary
can serve the request at time x̄. ut

Notice that the last lower bound is valid on a certain group of paths that are
not halfpaths. It is essentially the same result presented in [9] for (continuous)
OLTSP. In the full version of this paper we prove that the same lower bound
holds on a particular group of halfpaths.

Online Dial-a-Ride Problem (OLDARP) generalizes (continuous) OLTSP to
the case in which requests are pairs of points and a server must take an object
from the first point to the second point. It is interesting to note that the lower
bounds of this section are very similar to the corresponding lower bounds known
for OLDARP on the real line. For instance, the lower bounds of Theorem 11
and Theorem 12 are coincident with the lower bounds given in [11] and [7] for
Homing OLDARP on the real halfline against fair and standard adversaries,
respectively. While Theorem 11 uses the same idea presented in [11], we derived
Theorem 12 in a completely different way. The relation between our lower bounds
and those for OLDARP on the real line must be studied further. However, a
possible explanation for this phenomenon could be that, even though OLDARP



is defined on a continuous metric space, once the server picks up an object it
cannot satisfy other requests until the object is delivered. A similar situation
occurs in DOLTSP, where the server cannot change direction until it arrives to
the next vertex. A summary of results for OLDARP can be found in [11].

5 Cautious Algorithms

In Sect. 3 we saw that REP and ZZG achieve the best competitive ratio for zealous
online algorithms. However, those ratios are notably higher than the general
lower bounds shown in Sect. 4. It would be nice to have online algorithms with
competitiveness closer to these general lower bounds. In order to succeed, we
must consider a distinct class of algorithms.

An online cautious algorithm may wait without moving its server even when
there is pending work. New requests presented while the algorithm is waiting
(and even the absence of them), give additional information that the algorithm
can use to improve its performance. On the contrary, a zealous algorithm faced
with the same sequence of requests would take an early decision that could be
inappropriate a posteriori.

A key point in the design of a cautious online algorithm is to decide how
much time the server should wait when there is pending work. A longer wait-
ing increases the possibilities to obtain additional information. Nonetheless, the
caution must not be against the main goal of the algorithm, which is to minimize
the total time to complete its job.

Our cautious online algorithms aim at obtaining competitive ratios coinci-
dent with the general lower bounds of Sect. 4. Each time a new request arrives
the algorithms compute how long the adversary needs to serve all the known re-
quests. Then, cautious algorithms wait just till the moment in which extending
the waiting time would prevent obtaining the desired competitiveness. A number
of online algorithms that wait taking into account the cost of the adversary were
considered for continuous problems related to DOLTSP, such as OLTSP [10, 11],
OLDARP [7] and OL-ATSP [8].

We devised two cautious online algorithms using the general scheme described
above. The main difference between them is when they decide to wait. Our
first cautious algorithm is called Wait-Before-Return (WBR). The algorithm is
only defined for HDOLTSP on halfpaths. It serves as soon as possible pending
requests away from the origin. The remaining requests are satisfied when the
server returns to the origin. Before doing so, WBR waits as explained above.

The other cautious algorithm is Wait-Before-Begin (WBB). It is possible to
use this algorithm for both HDOLTSP and NDOLTSP, on any path (though we
only prove results for NDOLTSP on halfpaths). Each time the server is halted
and a new request is presented, WBB computes an optimal route that serves all
the pending requests. Before starting its tour, the algorithm waits according to
the general scheme explained above.



A more detailed description of WBR and WBB can be found in the full version of
this paper. The following results establish the competitiveness of the algorithms
in different variants of DOLTSP.

Theorem 15. Algorithm WBR is ρ-competitive for HDOLTSP on any halfpath,
with ρ = 1+

√
5

2 ≈ 1.618 against a fair adversary, and ρ = 2+
√

2
2 ≈ 1.707 against

a standard adversary.

Theorem 16. Algorithm WBB is 2-competitive for NDOLTSP on any halfpath
against both fair and standard adversaries.

Notice that the above upper bounds match the general lower bounds of
Sect. 4, with the exception of WBB for NDOLTSP against a fair adversary. If
we compare these lower and upper bounds, against those of Sect. 3 for zealous
algorithms, we observe that zealous algorithms for DOLTSP are weaker than
cautious algorithms.

Recall that in Sect. 3 we showed that for zealous online algorithms, HDOLTSP
is easier than NDOLTSP, and there is no difference between the two types of
adversaries. If we review the results of this section and those of Sect. 4, we can
observe that for cautious online algorithms once again HDOLTSP is easier than
NDOLTSP. Besides, for cautious algorithms we have better performances against
a fair adversary than against a standard adversary. That is, for cautious algo-
rithms the fair adversary is weaker than the standard one. This is not surprising
taking into account that the fair adversary has a restricted power.

As for general graphs, Theorem 3.2 in [8] states that a cautious algorithm
called SmartStart is 3+

√
5

2 -competitive for (continuous) Homing OL-ATSP. The
algorithm is a variation of an algorithm presented in [7]. In the same spirit as our
algorithm WBB, SmartStart waits at the origin until the moment in which waiting
more would prevent him from being competitive. At that moment it starts an
optimal tour that serves all the pending requests and returns to the origin. As
we said before, OL-ATSP can be viewed as a generalization of DOLTSP, so we
can derive the following result.

Theorem 17. Algorithm SmartStart for Homing OL-ATSP [8] determines a ρ-
competitive algorithm for HDOLTSP on any graph against both fair and standard
adversaries, with ρ = 3+

√
5

2 ≈ 2.618.

The above upper bound is far from the lower bounds of Theorem 11 and
Theorem 12 (Section 4). It is not clear for now whether the lower bounds can be
improved, or a better cautious algorithm can be found. In trying to improve the
lower bounds, requests outside a halfpath must be considered, since Theorem 15
states that WBR achieves a performance coincident with those lower bounds for
HDOLTSP on halfpaths.

6 Empirical Analysis of Online Algorithms

We designed a set of tests in order to get empirical evidence about how online
algorithms work in practice on paths. In our tests, we included all our competitive



algorithms, as well as other algorithms with some intuitive improvements. One of
these new algorithms is Statistic–Replan (STR), a subtle enhancement to regular
REP. The only difference occurs in NDOLTSP when the server is idle at some
vertex. Instead of waiting passively for a new request, STR moves the server
to the vertex that is the most likely to receive the next request, assuming the
existence of a pattern. Another algorithm we considered is Statistic–Wait-Before-
Begin (STW), which ends the waiting time when it is likely enough that no more
requests will be presented.

All the algorithms were tested using a large collection of instances designed
to cover a representative set of cases. This collection takes into account differ-
ent aspects of an instance: quantity and distribution of vertices, quantity and
distribution (over time and over space) of requests, etc. A set of 7506 distinct sce-
narios was considered by combining different values for each aspect. A detailed
description of the test set is given in the full version of this paper.

We executed all strategies over all instances on our test set. In each case we
computed the approximate ratio, i.e. the ratio between the cost of the online
solution and the optimal offline cost. Note that the approximate ratio of any
strategy is upper bounded by its competitive ratio.

Figure 1 shows the average approximate ratio of all algorithms (as a bar), and
the distribution of values among the different trials (as a telescopic-plot). One
thing we can conclude is that, as suggested by the theoretical part of our study,
HDOLTSP is easier than NDOLTSP. Besides, more than 50% of the times, the
simplest algorithms generated quasi optimal solutions. Opposed to this, most
approximate ratios of cautious strategies (WBR and WBB) exceed the threshold
of 1.5. However, as we could expect, the worst case ratios of the simplest algo-
rithms are much higher than those of the more sophisticated (competitive) ones.
The cautious algorithm with best results is STW, although it was better than all
zealous strategies only in 5% of the cases. The other cautious strategies (WBR
and WBB) were surpassed by a zealous algorithm in 90% of the cases. With this
evidence, we can conclude that waiting was not so profitable in practice. Finally,
our empirical study was useful to analyze how the different aspects of the in-
stances affect their complexity. We found that the distribution of requests over
time is the most influential aspect: it does not matter where vertices or requests
are located; the later the requests become visible, the worse are the results that
the online algorithm gets.
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