
Optimal Auctions Capturing Constraints in

Sponsored Search�

Esteban Feuerstein1, Pablo Ariel Heiber1, Mat́ıas Lopez-Rosenfeld1,
and Marcelo Mydlarz2

1 Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina
{efeuerst,pheiber,mlopez}@dc.uba.ar

2 Yahoo! Research, Santiago, Chile
marcem@yahoo.com

Abstract. Most sponsored search auctions use the Generalized Second
Price (GSP) rule. Given the GSP rule, they try to give an optimal al-
location, an easy task when the only need is to allocate ads to slots.
However, when other practical conditions must be fulfilled –such as bud-
get constraints, exploration of the performance of new ads, etc.– optimal
allocations are hard to obtain. We provide a method to optimally allo-
cate ads to slots under the practical conditions mentioned above. Our
auctions are stochastic, and can be applied in tandem with different pric-
ing rules, among which we highlight two: an intuitive generalization of
GSP and VCG payments.

1 Introduction

In the framework of sponsored search, advertisers compete in an auction to place
their ads on a web page. Each advertiser places a bid, and the search engine de-
cides, based on the bids and other public or private parameters, which ads will
be published and where. In the widely used pay-per-click model, each advertiser
is charged only when her ad receives a click. The position in which an ad is
displayed has an impact on its likelihood of being clicked, and advertisers’ pref-
erences follow accordingly. Nevertheless, it is generally assumed that all clicks
(independently of the ads’ position) have the same value for an advertiser; con-
sequently, search engines establish a price for a click that is not conditioned on
the position where the ad is presented.

The most widely used mechanism for sponsored search auctions combines the
sort-by-revenue allocation and Generalized Second Price (GSP) rules: bidders
are ranked according to the revenue the auctioneer expects to obtain from them,
while the price associated to each of the winning bidders –which are precisely
the top-ranked bidders– is the minimum amount each of them needs to bid in
order to maintain their position in the ranking [3,10].
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Although in a basic setting the aforementioned tandem sort-by-revenue/GSP
yields good revenue for the auctioneer, actual implementations must address
many extra features, for instance: (a) Click-through-rates and expected revenues
are not really known a priori, so they must be learned somehow by the auctioneer.
In order to avoid leaving out ads with high potential revenue, there is a need
to alternate among ads with high, small and unknown revenue expectation.
This is known as the explore/exploit trade-off [25]. In terms of the allocation
mechanism, the implementation of that trade-off may be seen as adding extra
constraints to the problem, for example stating that each ad must receive at least
a certain fraction of the impressions. (b) Users may aim at different meanings of
a same query. Hence, the overall clickability of the published ads, and likewise
the auctioneer’s revenue may increase when the set of published ads covers a
wide range of meanings, independently of the revenue expectation of each ad
considered separately [14,30]. (c) The publication of certain ads may have a
(possibly negative) influence on the click-probability of other ads. Therefore, the
set of ads with the highest aggregate click probability is not necessarily the set of
the best individual ads. These are called “contextual effects” [14,30]. (d) In the
process of optimizing the performance of an auction, we must decide how many
ads to display. This number influences the revenue in several conflicting ways.
On the one hand, the more ads published the higher the probability that a user
finds one that suits her needs. On the other hand, as the number of ads increases
the fraction of the user’s attention that each ad attracts decreases; moreover,
there is also evidence that the user experience suffers [4]. (e) Bidders usually set
budget constraints, i.e., upper bounds on the amount they are willing to spend
for a keyword or set of keywords over a time period. These kind of constraints
have been studied in [21,1,2]. (f) Advertisers may be allowed to place special
requests such as being displayed only in certain positions.

Instead of performing ad-hoc modifications to allocations and pricing rules to
model each of these extra features, it is useful to have an auction mechanism
general enough to easily adapt to a changing environment. We provide such
a mechanism, which simplifies and improves the usability of sponsored search
auctions, by means of stochastic auctions. Stochastic auctions are auctions in
which the allocation or the pricing rule (or both) are random variables. These
auctions may be preferable to deterministic ones for several reasons: (1) they
are less prone to vindictive and/or strategic bidding, since strategic behavior is
impaired by the non-deterministic nature of the output [20]; (2) the fact that
anyone can eventually win the auction contributes to have a wider advertisers
base and therefore higher revenue in the medium term [16]; (3) they bear higher
diversity of ads, which improves user experience and increases aggregate click
through rates [14,30]; (4) they provide an implicit mechanism to implement an
explore/exploit trade-off [12]; (5) they are in general less vulnerable to fraudulent
behavior [26].

The method we propose, based on mathematical programming, creates a
stochastic auction that achieves the best allocation with respect to some ob-
jective, that satisfies the constraints of the problem. Concretely, we provide an
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algorithm M, which can be subdivided into two parts: (1) a template algorithm
A that, given as input typical parameters (the advertisers’ bids, estimations of
the ad- and/or position-CTRs), possibly a set of constraints (e.g., budget or
variety restrictions), and an objective function O, produces an equivalence class
of stochastic allocations that satisfy the constraints, and are best possible ac-
cording to O, and (2) a drawing algorithm that allocates ads according to the
probabilities of some stochastic allocation in the class obtained through A.

The method just described can be combined with several pricing rules, as we
examine in Section 4. This combination yields, for a class of pricing rules which
we will call a priori, optimal auctions –according to different objectives. A priori
pricing rules include, among others, First-price and GSP. Other pricing rules
we can use include VCG payments and Myerson’s optimal truthful mechanism,
which requires an assumption about the bidders’ valuations (see Section 4).

We also introduce a natural extension of GSP for stochastic allocations, the
Extended Generalized Second Price (EGSP) rule: prices are not only associated
to the top-ranked bidders, but to all the bidders with a positive probability of
being allocated a slot. Prices are computed in the same way as in GSP, there-
fore the prices associated to the top-ranked bidders coincide under both pricing
rules.

EGSP is an a-priori pricing and can be coupled with different stochastic allo-
cation rules, in particular those obtained using algorithm M. This combination
becomes a way of extending mechanisms currently in use towards a framework
where a rich set of constraints can be explicitly included.

The computational complexity of algorithm A depends on the objective func-
tion and the type of restrictions. A key observation is that, thanks to the stochas-
tic nature of the allocations, there is no need to impose integrality restrictions.
In particular, there are many interesing objective functions and restrictions that
are linear (see Section 3), and yield polynomial time algorithms1.

As opposed to auctions currently in use, which (to the best of our knowledge)
can only handle constraints and objective functions in an ad-hoc way, M can
handle many of those constraints and objectives seamlessly, providing an optimal
allocation for many pricing rules, including EGSP. Indeed, M combined with
EGSP brings the same or better allocations than sort-by-revenue/GSP auctions.
Another advantage of M is related to the nature of the stochastic allocations
involved: we are able to optimize over a (continuous) polytope, as opposed to a
discrete lattice, where optimization is computationally inefficient.

In summary, we present an extension to the most popular pricing rule in spon-
sored search, and a method to derive best stochastic allocation rules based on
mathematical programming under different pricings. Neither of these contribu-
tions is a break-through result, yet their combination provides a powerful way to
obtain optimal auctions in some real-life settings of sponsored search. Another

1 Even when the types of restrictions entail a non-polynomial running time algorithm,
if the size of the problem is reasonably small, M may still be used in practice; e.g.,
by combining our approach with techniques for subdividing query-bidder graphs into
smaller instances [8].



Optimal Auctions Capturing Constraints in Sponsored Search 191

application is their use as benchmarks to measure the impact of the introduction
of constraints on the overall performance of an auction.

Related work. The subject of including budgets in the design of sponsored
auctions has received a lot of attention recently, for example in [7] and [1].
Mehta, Saberi, Vazirani and Vazirani [21] explore the problem from a competitive
analysis point of view: they aim at optimizing the total revenue for a set of
queries in an on-line manner, by trying to consume the maximum amount of
each bidder’s budget through a sequence of queries, of which neither the total
length nor the frequency of each are known in advance, obtaining an optimal
(1− 1/e)-competitive algorithm. Mahdian, Nazerzadeh and Saberi [19] consider
the same framework, and present an algorithm that takes advantage of good
estimations on the frequencies of keywords, while maintaining a good worst-case
competitive ratio in case that those estimates are incorrect.

Linear Programming and Stochastic Algorithms have been used before in the
framework of mechanism design. Just to cite a recent example in the framework
of truthful mechanism design for combinatorial problems, Lavi and Swamy [17]
propose a way to convert LP-based approximation algorithms into stochastic
mechanisms that give approximate solutions to the winner determination prob-
lem and are truthful in expectation (i.e., all players maximize their expected
utility by revealing their true values). One of the consequences of that work is
a truthful approximation algorithm for both multi-unit auctions and multi-unit
combinatorial auctions, which are problems related to ours. The focus there is,
however, on a different aspect of the problem, more related to computational
complexity of one-time auctions.

Much related to our approach, Abrams, Mendelevitch and Tomlin [2] use
LP trying to optimize sponsored search auctions subject to budget constraints.
The difference with our work is manifold. Firstly, they impose restrictions on
allocations: no ad can appear in a worse position than another ad with lower
ranking. Secondly, while our formulation supports diverse pricing rules, theirs
gets restricted to one: the price associated to each bidder is the minimum price
needed to beat the ad allocated to the next slot. Thirdly, their model is more
involved than ours, and requires more elaborated LP techniques such as delayed
column generation; our model is then computationally far more efficient. Finally,
it lacks the extra flexibility (given by stochastic allocations) for easily including
other kinds of restrictions.

LP has been used in the framework of on-line advertising under the more
traditional pay-per-impression model, for example in [23,29]. Finally, the use of
stochastic auctions for sponsored search has been recently considered in [20], [12],
[13] and [6].

2 The Model

Assumptions and notation. The setting we consider involves n risk-neutral
bidders that compete for slots, but no bidder can win more than one; the number
of slots is not set in advance. Each bidder i has a private value vi for each click
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received, and for which she places a bid of bi. Following each query, the auctioneer
decides which ads will be published along with their order.

A bid vector is a vector b = (b1, . . . , bn) ∈ R
n, while B denotes the set of all

bid vectors. An allocation s is an ordered subset of the ads to be displayed on a
particular occurrence of a query; its size is denoted by |s| (the number of ads to
be displayed).

Unless stated otherwise, we assume that the click probability of an ad is not
influenced by the identity of the other published ads. We denote by CTRi,j,k the
expected click probability of ad i when presented in the j-th position while a total
of k ads are displayed. The expected click-through rate of an ad i in an allocation
s, denoted by CTRi,s, is then CTRi,j,|s|, where j is the position of i in s. A
stochastic allocation S is a random variable with some probability distribution
over allocations. The expected click through rate of ad i in S, denoted by CTRi,S ,
is the sum over all possible allocations s of CTRi,sP (S = s) (where P (S = s)
denotes the probability that allocation s is chosen).

Let S be the set of all stochastic allocations. An allocation rule is a function
σ : B → S. A pricing μ = 〈μ1, . . . , μn〉 ∈ R

n is a vector of prices per click for
each bidder. A stochastic pricing is a probability distribution over pricings. Let
M be the set of all stochastic pricings. A pricing rule is a function p : B → M.
An auction is a pair (a, p), where a is an allocation rule and p is a pricing
rule.

Basic Model. Now we present a basic model that uses mathematical pro-
gramming in the framework of sponsored search auctions. First we define an
equivalence relation over stochastic allocations, along with a polyhedron whose
feasible region is the set of those equivalence classes. Then we provide an ef-
ficient algorithm that, given a point x in the polyhedron, obtains a stochastic
allocation S from the equivalence class of x, followed by an allocation according
to the probability distribution of S. Finally, we show that many typical auction
measures (such as social welfare or the auctioneer’s expected revenue) may be
described as linear functions over the polyhedron, being therefore possible to
efficiently compute the optimal equivalence class of allocations for that measure
using linear programming.

We say that two stochastic allocations S and S′ are equivalent if, and only
if, for each ad i, each position j and each k, the probability that ad i is as-
signed to slot j when displaying k ads is the same under S as under S′. That
two equivalent stochastic allocations are not necessarily equal is shown in the
following simple example. Consider two stochastic allocations S1 and S2; S1 al-
locates three bidders in order (1, 2, 3), (2, 3, 1), and (3, 1, 2) each allocation with
probability 1/3, and S2 allocates them in order (1, 3, 2), (3, 2, 1), and (2, 1, 3)
each with probability 1/3 as well. While S1 and S2 are different, both have
the same probability of allocation for each combination of advertiser and po-
sition (there are always three ads displayed), and thus CTRi,S1 = CTRi,S2

for each ad i.
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If two stochastic allocations are equivalent, the expected CTR of each ad
coincides in both stochastic allocations and consequently, (noting that the price
per click charged to any bidder is independent of the slot assigned to her) both
the expected revenue for each bidder and for the auctioneer are the same as well
in both auctions (under equal pricings).

The Stochastic Allocations Polyhedron. By regarding yk as the proba-
bility of having k ads displayed, and xi,j,k as the probability of ad i being
displayed on position j when a total of k ads are displayed (1 ≤ i ≤ n,
1 ≤ j ≤ k ≤ n), we define the Stochastic Allocations Polyhedron (SAP) by

xi,j,k ≥ 0 for each i, j, k (1)

n∑

i=1

xi,j,k ≤ yk for each j, k (3)

n∑

k=1

yk = 1 (2)

k∑

j=1

xi,j,k ≤ yk for each i, k. (4)

For convenience we also define an extension of SAP (SAP-e), by adding non-
negative (slack) variables xi,j,k for j > k, and replacing inequalities (3) and (4)
with

n∑

i=1

xi,j,k = yk for each j, k (3a)
n∑

j=1

xi,j,k = yk for each i, k. (4a)

It is easy to see that the feasible region of SAP-e may be partitioned into
subsets such that each of these subsets is associated with one feasible solution
of SAP (by dropping the slack variables). While each feasible solution of SAP
represents a class of stochastic allocations, SAP-e will prove useful for technical
purposes.

Note that if we replace yk by 1, and remove the third coordinate of the vari-
ables xi,j,k, then (1), (3a) and (4a) describe the bipartite perfect matching poly-
tope [11,27,18]. As in the bipartite matching polytope, we state in the next
lemma that SAP extremes are also integral.

Lemma 1. Every extreme of SAP (SAP-e) is integral.

A drawing algorithm. Each solution of SAP (or SAP-e) can be associated with
a set of equivalent stochastic allocations. Given such solution (xi,j,k, yk)1≤i,j,k≤n

in SAP-e, we show next how to obtain a stochastic allocation in its equivalence
class.

For each k such that yk > 0 we define the n×n matrix Z(k) = (z(k)
i,j )1≤i,j≤n by

z
(k)
i,j = xi,j,k/yk. From this definition and restrictions (3a) and (4a) follows that

each row and column of Z(k) sums up to 1, that is, Z(k) is a doubly stochastic
matrix. In consonance with the Birkhoff-von Neumann theorem [5], Z(k) is a
convex combination of permutation matrices. Accordingly, we give the following
probabilistic algorithm that produces an allocation given a point in SAP:
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Choose k with probability yk.
Construct Z(k).
Find permutation matrices Pl and positive numbers λl

such that
∑

l λl = 1 and Z(k) =
∑

l λlPl.
Choose a permutation matrix Pl with probability λl.
For j = 1 to k

Let i be such that P [i, j] = 1.
Display ad i in position j.

We can see that with the preceding algorithm the probability of displaying
exactly k ads is yk, and the probability that ad i is displayed in position j while
having k ads on display is ykz

(k)
i,j = xi,j,k. Therefore, the stochastic allocation

that results from the application of the algorithm to a point in SAP belongs
to the equivalence class of the point (the stochastic allocation selected from
the equivalence class depends on the convex combination found, which is not
necessarily unique).

Now our procedure is clear: apply an instance of the template algorithm A in
order to obtain a solution of SAP, and feed that solution to the drawing algorithm
in order to obtain an allocation. Since the convex combination for any given
matrix Z(k) can be attained in polynomial time, the drawing algorithm takes
polynomial time as well. As long as the instance of A also runs in polynomial
time, so will our procedure.

Lemma 1 implies that we are modeling an assignment problem, which can
be solved with faster methods than using linear programming plus the drawing
algorithm. Nevertheless, as it will become clear in in the next section, this model
provides an extra flexibility that enables the inclusion of different extensions.

3 Optimizing over SAP and Extensions

In order to round up the description of our model, we note that we can opti-
mize any function over SAP. In particular, we consider linear functions, that
yield linear programs. A natural instance of such functions is the social wel-
fare, which can be maximized if we have the bidders’ private values (or an
estimation):

∑n
i=1

∑n
k=1

∑k
j=1 xi,j,kCTRi,j,kvi. Alternatively, we can maximize

the expected revenue of the auctioneer,
∑n

i=1

∑n
k=1

∑k
j=1 xi,j,kCTRi,j,kμi. We

can also maximize any linear combination of measures, therefore being able to
tweak the trade-off between different objectives. We give an example of this kind
of objective functions at the end of the next subsection.

We note that the model depends on some parameters of the environment,
mainly the pricing and the click probabilities. As for the pricing, the vector
μ = 〈μ1, . . . , μn〉 that we use may be a function of the bids and eventually other
variables (like the click probabilities themselves), but we restrict μ to not depend
on the allocation rule2. In other words, when the objective function depends on
2 We could also use µi,j,k, allowing the price to depend on the number of ads displayed

and their positions.
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the price (e.g., the revenue function), the model is general enough to represent
any stochastic sponsored search auction in which the prices are calculated “a
priori” of the assignment. This includes classical pricing rules such as first-price
or appropriate variants of the second-price rule. In Section 4 we present a natural
extension of the broadly used Generalized Second Price (GSP) rule [10], which
is suitable for our auctions. Note that we make no equilibrium analysis in these
cases.

Since the extremes of SAP are binary solutions, maximizing any continuous
objective function may be seen as an assignment problem. It is only natural then
that we can obtain the same solutions with less sophisticated methods than linear
programming. Nevertheless, the power of the model presented in Section 2 lies on
its flexibility: it may be combined with different objective functions, restricted by
adding different types of constraints, and extended by adding new variables that
represent other features of the auction. Next we show a few practical instances
of these extensions.

We restrict our analysis to linear programming, therefore both the objective
functions and constraints considered are linear. We also note that although we
consider each extension separately, they can be combined according to the fea-
tures being modeled.

3.1 Variety Constraints

The first extension to the basic model that we consider are variety constraints.
They are introduced as a means of granting each bidder some minimum reward
in terms of impressions or click probability.

We consider two types of variety constraints: 1. Each ad is granted some
probability of appearance on each occurrence of the query, 2. Each ad is granted
a minimum expected click probability on each occurrence of the query. Both of
them can be modeled by linear constraints to restrict the solution set of SAP. The
first one may be appealing to some advertisers who are interested in impressions
rather than clicks. However, the usual model for sponsored search considers that
bidders only get profit on clicks, so we focus on type 2 constraints. In order
to define type 2 constraints we make use of the separability assumption [3]:
the CTR may be separated into two factors, one advertisement-specific, the ad-
CTR, and the other position-specific, the position-CTR. Formally, denoting by
ai the ad-CTR of ad i, and by wj,k the position-CTR of slot j when k ads
are displayed, the separability assumption states that CTRi,j,k = aiwj,k. For
convenience, we assume without loss of generality that the weights are sorted in
such a way that CTRi,j,k ≥ CTRi,j+1,k (wj,k ≥ wj+1,k). We also assume that
CTRi,j,k ≥ CTRi,j,k+1 (wj,k ≥ wj,k+1), since having additional ads displayed
can only reduce the visibility of the others. If the maximum number of ads to
be displayed is m, then we set wj,k = 0 for all k > m.

By denoting with lai and lpi the lower bounds on bidder i’s expected impression
probability and position-CTR, respectively, constraints of type 1 and 2 can be
respectively expressed by
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n∑

k=1

k∑

j=1

xi,j,k ≥ lai for each i and

n∑

k=1

k∑

j=1

wj,kxi,j,k ≥ lpi for each i.

Since the lower bounds are part of the input to M, different alternatives are
possible. They are beyond the scope of this article. Nevertheless, we observe that
for constraints of type 1, no feasible solution exists unless

∑n
i=1 lai < k, for the

largest k satisfying wk,k > 0. It is less evident that for constraints of type 2 and
assuming lpi > lpi+1, no feasible solution exists unless there is k such that for each
1 ≤ t ≤ n,

∑t
i=1 lpi ≤ ∑t

i=1 wi,k; we omit the proof due to space limitations.
Alternatively, the need of periodically publishing every ad can be expressed via

another objective function such as
∑n

i=1

∑n
k=1

∑k
j=1 xijk(wjkaiμi + Ei), where

Ei is a measure of the benefit of exploring ad i, provided by an external source
devoted to manage the explore/exploit trade-off [25].

3.2 Budget Constraints

We introduce now budget constraints, describing how much bidders are willing to
spend. In order to model these constraints, we slightly modify our polyhedron,
increasing its dimension. Nevertheless, all the results presented thus far can be
easily extended to support this change.

Instead of working with a single query, we consider now a set of queries Q;
each bidders may place bids on many (possibly different) queries; Thus, we need
to add to the variables and constants presented in Section 2 a new subindex q
ranging over Q. For instance, we will have variables yk,q and xi,j,k,q whenever
bidder i bids on q; a priori prices μi,q may be part of the input. The basic
restrictions of Section 2 become

xi,j,k,q ≥ 0 for each q, i, j, k

n∑

i=1

xi,j,k,q ≤ yk,q for each q, j, k

n∑

k=1

yk,q = 1 for each q

n∑

j=1

xi,j,k,q ≤ yk,q for each q, i, k.

Each query q ∈ Q is expected to occur cq times during a certain time window;
each bidder i may set a maximum budget B

(q)
i for q and/or a maximum overall

budget Bi. Note that some of the budgets may be set to infinity by dropping
the associated restriction. Bidders that do not participate in a given query can
be modeled with a 0 price, as they should never be displayed for that query.

Naturally, the objective function must be modified accordingly; e.g., the rev-
enue maximization goal would be

∑
q

∑n
i=1

∑n
k=1

∑k
j=1 cqxi,j,k,qCTRi,j,k,qμi,q.

We state now the restrictions that in expectation preclude bidders from going
over their budgets: the expected payments of each bidder should not exceed her
budget during a time window.
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∑

q

n∑

k=1

k∑

j=1

cqxi,j,k,qCTRi,j,k,qμi,q ≤ Bi for each i

n∑

k=1

k∑

j=1

cqxi,j,k,qCTRi,j,k,qμi,q ≤ B
(q)
i for each i, q.

Note that in practice it would be possible to display an ad whose budget
has been exhausted. In such cases we may choose to replace this ad by any
other one, without significantly affecting the expected revenue. A possible way
of reducing the incidence of such situations is to use Bi − ε instead of Bi in
the LP constraints. We note that artificially retaining bidders with exhausted
budgets may result in some illegitimate price hikes for other bidders, depending
on the pricing rule. This effect however can be controlled if needed.

3.3 Contextual Effects and Other Restrictions

We consider now situations where the click probability of an ad is influenced by
the other ads displayed. These are called externalities or contextual effects, and
have been considered recently in [14,15]. The latter argues through experimental
evidence that contextual effects do exist in sponsored search, and quantifies
them.

One possible way of modeling contextual effects in our framework is by group-
ing together ads that have negative effects on each other’s clickability and intro-
ducing a new kind of restriction, that aims at avoiding the joint publication of
ads in the same group. In order to establish incompatibilities among groups of
similar ads, ads are partitioned into incompatibility groups (each ad in exactly
one group). The restriction states that at most one ad of each group can be dis-
played at the same time. This approach may be useful, for instance, when a query
has different meanings – so users that search for that query may have different
intentions– and the auctioneer tries to cover all the range without increasing the
total number of ads shown.

In this extension, apart from adding restrictions to SAP, we also need to refine
the drawing algorithm given in Section 2 that produces the allocation. This can
be done with minor adjustments. Let m be the number of incompatibility groups.
Since we will assign m groups instead of n bidders to the slots, we set n to be m.
We need to ensure that each group receives, for each particular k, an aggregated
probability of exactly yk of being assigned some position. Letting G be the set
of groups, this is captured by

∑

i∈g

m∑

j=1

xi,j,k = yk for each g ∈ G, k.

We can maximize different objective functions over this new polyhedron, look-
ing for good “group allocations”. Concrete ad allocations will be produced by
a modified version of the drawing algorithm. For each k such that yk > 0, we
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construct an m × m matrix Z(k) that is used to choose group permutations in-
stead of bidder permutations, and then for each selected group g, choose a bidder
from g and assign it to the slot. Z(k) is defined by z

(k)
l,j =

∑
i∈Gl

xi,j,k/yk for
1 ≤ l, j ≤ m. Note that again Z(k) is a doubly stochastic matrix, so we apply
the Birkhoff-von Neumann theorem as in Section 2. The new drawing algorithm
will then be:

Choose k with probability yk.
Construct Z(k).
Find permutation matrices Pl and positive numbers λl

such that
∑

l λl = 1 and Z(k) =
∑

l λlPl.
Choose a permutation matrix Pl with probability λl.
For j = 1 to k

Let g be such that P [g, j] = 1.
Choose ad i of group g with probability xi,j,k∑

i∈g xi,j,k
.

Display ad i in position j.

It follows immediately that the probability of ad i of group l being placed on
position j when k ads are displayed is ykz

(k)
l,j xi,j,k/

∑
i∈Gl

xi,j,k = xi,j,k.
Grouping can also be used in other ways, such as setting the minimum num-

ber of ads to display from each group. However, this would require a deeper
modification in the drawing algorithm.

4 Pricing Rules

Auctions are constituted by two main components: the allocation rule and the
pricing rule. So far we have focused on obtaining optimal allocations (according
to some criteria) that satisfy a number of restrictions. In this section, we focus
on the pricing rules that can be combined with those allocation rules.

We divide our analysis in two directions: first we analyze pricing rules that
are best suited for our optimization framework, and then we consider incentive-
compatible (truthful) pricing rules. In the first case we do not make a
game-theoretic analysis, we assume that bids do not change in response to the
allocation rule. With truthful pricings, however, we can assume that the bids are
in equilibrium since by definition every bidder maximizes her expected revenue
by bidding her true value.

A priori pricing rules and EGSP. When the prices associated to the ads may
depend on the ranking, but not on the allocation, these prices may be part of the
input of M, so as to find the best allocation with respect to some objective that
depends on them3. We call these pricing rules a priori. Several well-known and
3 In the general case, we do allow a light dependence on the allocation: we only asso-

ciate a non-zero price when an item is allocated; nevertheless, in the pay-per-click
model this distinction disappears since an ad that is not displayed cannot be clicked
and therefore will not be charged.
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widespread pricing rules are indeed a priori; most notorious examples of this class
are First-Price and the Generalized Second Price (GSP) [3,10]. While the former
may be applied in our framework, it has been dropped from sponsored-search
settings due to its instability. On the other hand, GSP has become the most
widely used rule in that framework, enjoying good properties such as envy-free
equilibria (see [10] for details).

We introduce a natural extension of GSP for stochastic allocations, the Ex-
tended Generalized Second Price (EGSP) rule. Like in GSP, EGSP assumes that
the auctioneer ranks bidders according to some function on their bids while each
winning bidder pays (for a click) the minimum price needed to retain her po-
sition in the ranking. However, with EGSP prices are not only associated to
the top-ranked bidders, but to all the bidders with a positive probability of be-
ing allocated a slot. Since prices are computed in the same way as in GSP, the
prices associated to the top-ranked bidders coincide under both pricing rules.
Note that, as we are dealing with stochastic allocations, the ranking order is
not necessarily the order in which ads are displayed each time; nevertheless, the
resulting stochastic allocation rule will tend to allocate more/better slots to ads
with a higher ranking.

Another extension of GSP to an allocation rule different than the simple sort-
by-revenue rule has been proposed in [2]: given allocations that are subsets of
the ads ordered by ranking, the price associated to each bidder is the minimum
price needed to beat the ad allocated to the following slot (the price associated
to the last ad is the reserve price). It is easy to see that, given any set of bids,
EGSP charges strictly more than the pricing rule in [2].

Incentive Compatibility. Although the variations over the GSP rule currently
in use in sponsored search auctions are not truthful, there are many reasons that
make truthfulness a desirable property, which can be summarized in the fact
that advertisers can define their optimal bids by themselves, without the need
of invoking consultants or gurus, driving more resources to the sponsored search
business, for the benefit of advertisers, auctioneer and users.

A natural way to incorporate truthfulness into our framework consists of
the classical VCG approach [28,9], that is, the incentive-compatible pricing rule
corresponding to the allocation obtained through M that is individually rational
and makes no positive transfers [24]. For instance, when bidder i’s bid is bi

(interpreted as values vi, since in a truthful auction we can assume that each
bidder bids her own private valuation), and the objective funcion is the social
welfare

∑n
i=1

∑n
k=1

∑k
j=1 xi,j,kCTRi,j,kbi, we associate to each bidder a price

equal to the difference between social welfare value obtained with and without
her participation. In this way, in order to compute the price for the n bidders
we run the mathematical program n + 1 times. In practice the computation can
be done “on demand”, that is, only when an ad indeed receives a click.

Another approach to truthfulness within our framework is the following: given
a distribution Fi on the valuation of each bidder i (known or inferred through
historical data), we apply Myerson’s incentive-compatible mechanism [22,16],
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which maximizes the (expected) revenue of the auctioneer4. For an explanation
on how to apply this mechanism, see for example [24].

Further Research. We are currently studying “a priori” pricing methods and
their consequences, in particular the existence of equilibra for stochastic auctions
under EGSP.

Another interesting research subject are auctions in which the expected
position-CTR of the i-th ranked bidder is set to a value pi. Such auctions, though
stochastic in nature, behave like deterministic ones, so paired with EGSP will
have interesting properties, such as the existence of envy-free equilibria [10].

Acknowledgments. We thank Ofer Mendelevitch and John Tomlin for pro-
viding us with data for the simulations.
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