Algorithmica (2002) 32: 3660 . .
DOI: 10.1007500453-001-0073-2 Al go rithmica

© 2002 Springer-Verlag New York Inc.

On-Line Multi-Threaded Paging?
E. Feuersteihand A. Strejilevich de Lonta

Abstract. In this paper we introduce a generalization of Paging to the case where there are many threads of
requests. This models situations in which the requests come from more than one independent source. Hence,
apart from decidinfpowto serve a request, at each stage it is necessary to deliderequest to serve among

several possibilities.

Four different on-line problems arise depending on whether we consider fairness restrictions or not, with
finite or infinite input sequences. We study all of them, proving lower and upper bounds for the competitiveness
of on-line algorithms.

The main competitiveness results presented in this paper state that when no fairness restrictions are imposed
it is possible to obtain competitive algorithms for finite and infinite inputs. On the other hand, for the fair case
in general there exist no competitive algorithms.

In addition, we consider three definitions of competitiveness for infinite inputs. One of them forces al-
gorithms to behave efficiently at every finite stage, while the other two aim at comparing the algorithms’
steady-state performances. A priori, the three definitions seem different. We study them and find, however,
that they are essentially equivalent. This suggests that the competitiveness results that we obtain reflect the
intrinsic difficulty of the problem and are not a consequence of a too strict definition of competitiveness.

Key Words. Competitive analysis, Fairness, Multi-tasking systems, On-line algorithms, Paging.

1. Introduction. ThePagingproblem consists of managing a two-level memory, one
level having limited capacity and fast access (the cache) and the other one having slow
access but potentially unlimited capacity.Paging algorithmis given a sequence of
page references; at each step the algorithm must ensure that the requested page is in
fast memory, perhaps evicting another page to make room for the incoming pageA

fault occurs each time a page must be brought into fast memory. The goal of a Paging
algorithm is to minimize the total number of page faults over the sequence of requests.
An on-line algorithmfor Paging must decide which page to evict without knowledge of
future requests, while aoff-line algorithmcan decide based on the whole sequence. On-
line algorithms for Paging have been studied fromoenpetitive analysipoint of view

in [16], comparing their performance to that of the optimal off-line algorithm. In that
work it was shown that, if the cache can h&ldages, no deterministic on-line algorithm

can be better thalk-competitive, that is, guarantee less thaimes the optimal off-line
number of page faults on every input; it was also shown that some previously known

1 This research was supported in part by EC project DYNDATA under program KIT, and by UBACYT projects
“Algoritmos Eficientes para Problemas On-line con Aplicaciones” and “Modeloscpitas para Problemas

de Optimizaddh Combinatoria.” Part of the material presented in this paper appeared in [8] and [9].

2 Departamento de Computaci’ Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Pabelbn |, Ciudad Universitaria, (1428) Capital Federal, Argentjefeuerst,asdgfddc.uba.ar.

Received May 5, 1997; revised June 22, 1998. Communicated by A. Borodin.
Online publication October 12, 2001.

On-Line Multi-Threaded Paging 37

on-line algorithms such as Least-Recently-Used (LRU) and First-In-First-Out (FIFO)
achieve that bound.

In this paper we introduce thdulti-Threaded Pagingproblem (MTP). MTP gener-
alizes Paging to the case in which there is not just one sequence of requests but possibly
many threads. This models situations in which the requests come from more than one
independent source. Hence, apart from decitlimgto serve a request, at each stage itis
necessary to decidehichrequest to serve among several possibilities. In this case there
is no notion of “sequence of requests” but a more complex pattern that is not captured by
the most general classes of on-line problems proposed in the literature (such as Metrical
Task Systems [5] or Request—Answer Games [3], [12]).

MTP may be interesting from a practical point of view, as it models the situation arising
in multi-tasking systems, where independent processes simultaneously present their
requirements of pages of secondary memory that must be brought into fast memory.
At each moment, the system can see only one request per process, precisely the first
unserved request of the sequence of requests that the process presents. Only after serving
the current request of a particular process will the following request of that process be
presented. The system must decide at each step whose request to satisfy, and also (as in
normal Paging) which page of fast memory to remove on a page fault. In other words, it
acts as scheduler and fast memory manager at the same time. The total number of page
faults depends therefore not only on the strategy used to determine how each request is
served but on which requests are satisfied, and when (in which order) this is done.

The problem that we introduce is also theoretically significant since itis, as far as we
know, the first on-line problem in the literature in which there are several servers (each
slot in the cache) and several clients (one for each thread). Indeed, this is the first paper
that considers from a competitive analysis point of view some new issues arising in the
family of multi-threaded problems, such as fairness restrictions and infinite inputs. In
addition, all our definitions may be easily extended to infinite multi-threaded versions of,
for example, Metrical Task Systems. This is the first step toward establishing an adequate
model for analyzing the performance of on-line algorithms for many other interesting
on-line problems with finite or infinite multi-threaded inputs.

The basic definition of MTP suggests two “dimensions” in which the problem can
be analyzed. The first one regafdgness Algorithms may simply try to minimize the
number of page faults done while serving a setvaddequences of requests, or we may
impose additional fairness restrictions, so all algorithms must guarantee that the next
request of each thread will be served within a predetermined finite time.

The second dimension is relatedfioitenessWe can consider two different classes
of inputs, namely finite and infinite input sequences. We show that the two definitions
lead to subtly different results. This is in contrast to what happens in the single-threaded
case, for which a paper by Raghavan and Snir [14] compared two alternative definitions
of competitiveness (with finite and infinite input sequences respectively) and showed
that both approaches are equivalent in a deterministic setting.

We consider three definitions of competitiveness for infinite inputs. They can be sum-
marized as follows: The first one assumes that an algorithm that serves infinite inputs
must behave efficiently at every finite stage of the process. The second and third defi-
nitions aim at comparing the algorithms’ steady-state performances rather than to pick
a single moment and count page faults up to that moment. In other words, algorithms

38 E. Feuerstein and A. Strejilevich de Loma

that treat infinite inputs are not compared at finite stages but when the number of served
requests tends to infinity. The difference between the last two models is given by the
way in which infinite inputs with bounded cost are treated. A priori, the three models of
competitiveness seem different. We study them and find, however, that they are essen-
tially equivalent. This suggests that the competitiveness results that we obtain reflect the
intrinsic difficulty of the problem and are not a consequence of a too strict definition of
competitiveness.

Four different on-line problems arise depending on whether we consider fairness re-
strictions or not, with finite or infinite input sequences. We study all of them, proving
lower and upper bounds for the competitiveness of on-line algorithms. The main com-
petitiveness results presented in this paper state that when no fairness restrictions are
imposed it is possible to obtain competitive algorithms for finite and infinite inputs. On
the other hand, for the fair problems in general there exist no competitive algorithms (al-
though there is an interesting exception in the particular case of extremely tight fairness
restrictions).

Fiat and Karlin [10] have considered a problem related to MTP, in which the input
corresponds to a multi-pointer walk on ancess graph4]. Within that framework,
the multiple threads of requests are merged in one input sequence, corresponding to
an interleaved execution of the different threads. The way in which the sequences are
interleaved in [10] is decided in an earlier stage of the process (and is the same for all
algorithms). In contrast, in MTP each algorithm is free to decide (up to a certain limit,
in the case of fairness restrictions) how to interleave the sequences.

Recently, Alborzi et al. [1] have proposed a multi-threaded version of the 1-server
problem. Although the 1-server problem is a generalization of PagingkwitHL, only
finite input sequences are considered in [1], and fairness restrictions are not explicitly
modeled.

Kimbrel [13] analyzed the problem of deciding how to interleave independent se-
quences of operations of two kinds: inpotitput data prefetches and the consumption
of the data by a processor. In this problem the goal is to minimize the processor’s stall
time on data fetches. The model is based on the fact that in many applications some
lookahead can be assumed, i.e., ifputput demands are disclosed to the file system
in advance.

Further work related to the framework that we present in this paper has been done
by Strejilevich de Loma [17], who considered some interesting particular cases; by
Feuerstein et al. [6], who improved some of the results for the finite version; and by
Seiden [15], who gave randomized lower and upper bounds for the problem under the
definitions of competitiveness given in [8].

The remainder of this paperis organized as follows: In Section 2 we formally introduce
the four different versions of our problem, that is, the finite and infinite versions, with
and without fairness restrictions. Moreover, we introduce the different definitions of
competitiveness that may be used for evaluating the performance of on-line algorithms
for the different versions of MTP. Section 3 presents some basic material related to
normal Paging that is used later. Sections 4 and 5 are devoted to the study of the finite and
infinite versions of MTP, respectively. There we establish lower and upper bounds with
and without fairness restrictions, under the different competitiveness models. Finally,
Section 6 is dedicated to describing conclusions, further research, and open problems.

On-Line Multi-Threaded Paging 39

2. Different Problems and Performance Measures. In this section we present the
different on-line problems that arise depending on whether we consider finite or infinite
input sequences and whether we impose fairness restrictions or not. We also present three
alternative definitions of competitiveness that can be applied to infinite multi-threaded
problems.

2.1. Finite versus Infinite Sequencesln our first problem, called Finite-MTP (FMTP),
algorithms are faced with a certain numbeffiafte sequences of requests that have to
be serveccompletely that is, algorithms have to arrive at the end of each one of the
sequences. FMTP is given by the set of pddesnd two positive integetisandw, the

size of the cache and the number of sequences, respectivelyoy, oy, ..., 0y, IS an

input tuple where eacla; is a finite sequence of requests (each request is an element of
U). The tuple formed by th¢th request of each sequence is calledjtiow of requests.

At any stage, a sequenegwhose last request has not been served is caliéde

At every moment, an algorithm for FMTP holdsdistinct pages in its cache, and
to serve a request to pagee U, p must be present in the cache. An algorithm for
FMTP receives a tuple of sequeneess input and produces as output an interleaving
of the sequences of together with a sequence of configurations of the cache used to
serve each of the requests. We call this outpsitteeduldor o. The cost of a schedule
is the sum of the Hamming distances between successive cache configurations of the
schedule. An on-line algorithm must produce the schedule with the restriction that each
configuration must be determined only as a function of the currently seen requests and
all the requests already served by the algorithm. An off-line algorithm can decide each
configuration based on the entire input.

Certain types of systems are formed by a finite number of infinite sequential processes
thatrun concurrently, each one of them producing its own sequence of requests to memory
pages. We can model these situations by considering infinite sequences of requests, and
we get the infinite version of the problem, Infinite-MTP (IMTP). The task of an algorithm
for this problem is the same as for the finite case, except from the fact that an infinite
schedule must be produced. In this case the cost of a schedule is an infinite sum.

In both cases the goal of an algorithm is to produce a schedule that minimizes the
total cost. In Section 2.3 we discuss how competitive analysis can be used to evaluate
the performance of on-line algorithms for these problems.

2.2. Fairness In Section 2.1 we did not make any consideration regarding the fairness
of the algorithms for MTP. In other words, algorithms for both variants of the problem
would try to minimize the number of page faults. For example, in the infinite case that
could be achieved even by serving only the requests coming from one particular thread.
In certain frameworks, such as multi-tasking systems, this would not be admissible.
Therefore, it is natural to impose fairness restrictions. We model them by considering,
as part of the input of the problem, a (usually large) integgich that no request can
“wait” more thant units of time from the moment the previous request of the sequence
has been satisfied. Time is measured in the following way: one unit of time elapses each
time the system serves a request. Consequently, we define the notiefadf schedule.

An algorithm for the Fair-MTP problem must produce-fair schedule for the input
tuple of sequences. An on-line algorithm must obviously produce the schedule based

40 E. Feuerstein and A. Strejilevich de Loma

only on the known part of the input. We can apply this notion to both finite and infinite
inputs, and therefore we get two new problems, namely Fair-FMTP and Fair-IMTP.

Turning back to the definition, note that the problem is well defined whenewer
w — 1. An interesting particular case arises whers= w — 1. This corresponds to
imposing that, after choosing an ordering among the sequences, the input must be served
in a round-robin fashion.

For notational convenience, from now on we refer to the two problems defined in
Section 2.1 as Unfair-FMTP and Unfair-IMTP, while the terms FMTP and IMTP are
used when fairness is not relevant. Analogously, we use the terms Unfair-MTP and Fair-
MTP (without reference to the finiteness of the sequences) when finiteness is irrelevant.

2.3. Performance Measures For the finite versions of MTP, every algorithm must serve
all the requests that appear in the input tuple. Therefore, the straightforward extension
of the traditional definition of competitiveness naturally applies to this case. We say that
an algorithm A for FMTP i-competitive if and only if there exists a constdhtsuch
that for any input tupler, we haveCa (o) — ¢ - Copt(c) < D, whereCa (o) is the cost
incurred by A, andCopt(o) is the cost incurred by an optimal off-line algorithm.

When we deal with infinite input sequences, things are less immediate: as the cost of
a schedule is an infinite sum, it can be measured at finite moments or in the limit, and
there may be different ways of comparing performances of algorithms. The previous
definition of competitiveness may be naturally adapted to IMTP as follows.

MODEL every-step An algorithm for IMTP isc-competitive if and only if
(AD)(Vo)(V€)Ca(o, £) — - Copr(o, £) < D,

whereCa (o, £) is the cost incurred by the algorithm for serving a finite humbef
requests, an@opt(o, £) is the cost incurred by an optimal off-line algorithm that serves
¢ requests.

On-line algorithms are not aware of the moment when their performance will be
compared with that of the optimal off-line algorithm. Therefore this definition implies
that an on-line algorithm, to be competitive on infinite sequences, must be competitive at
every finite stage. This contrasts with the intuition that, for infinite inputs, one would like
to evaluate an algorithm’s performance in the long run, and not at particular moments.
This point is addressed by the following definition.

MODEL constant-limit An algorithm for IMTP isc-competitive if and only if

(3D) (Vo) lim supCa(o, £) — ¢ - Copt(o, £) < D.

{—o00

This second definition seems somehow too strict, as it requires the existence of one
particular constant to bound the difference between the on-line cost #intes the
optimal off-line cost. For costs that tend to infinity (something that may happen in
IMTP) it could suffice that that difference is bounded. That is the intention of the third
(and last) definition of competitiveness we present.

On-Line Multi-Threaded Paging 41

MODEL variable-limit. An algorithm for IMTP isc-competitive if and only if

(Vo) lim supCa (o, £) — c- Copr(o, £) < o0.

{— 00

An immediate consequence of this definition is that for infinite inputs that can be served
with constant cost, any algorithm that eventually does not fault anymore will fit the
definition. This is not true for the other two models.

In a classical paper [14], Raghavan and Snir compared two alternative definitions
of competitiveness for Paging algorithms. The first one measures the performance of
algorithms “in the limit,” i.e., when the number of requests to serve tends to infinity,
while the second one does so for finite sequences. By definition of the Paging problem,
at every finite moment every algorithm has served the same set of requests, and that is
the intuitive reason that makes both approaches essentially equivalent in a deterministic
setting, as is proved in [14]. With multiple threads that reason is not valid anymore.
Nevertheless, we will prove that the three models of competitiveness, that a priori seem
different, are essentially equivalent. Notice thatfor 1 (normal Paging) our every-step
and variable-limit models correspond respectively to the definitions of competitiveness
on finite sequences and competitiveness in the limit, defined in [14]. In addition, for
w = 1 there is no distinction between FMTP and the every-step model of IMTP.

3. Basics on Normal Paging. In this section we present some basic material related
to normal Paging, that we use in the following sections.

3.1. The Paging Algorithm Flush-When-Full Allthe algorithms presented in this paper
for the different versions of MTP are based on Flush-When-Full (FWF), a very well
knownk-competitive on-line algorithm for Paging, that was introduced in [11]. However,
it is worthwhile noting that we could have used any deterministic marking algorithm (for
instance, LRU); we have chosen FWF to simplify the analysis.

FWF maintains a set of marked pages. Initially no page is marked. On each request,
an unmarked page is evicted to make room for the requested page if necessary; in any
case the requested page is marked. The behavior of FWF on a request pipabgewn
in Figure 1. FWF works irphasesthe first phase starting with the first request of the
sequence and each new phase starting with the request that would have caused more
thank pages to be marked (when the marks are deleted). It is easy to verify that FWF

If p is not present in the cache then
If k pages are marked then
s a new phase starts
Erase all the marks
end If
Choose a page p’ deterministically among the unmarked pages of the cache
Evict p’ and bring p
end If
Mark p.

Fig. 1. Behavior of algorithm Flush-When-Full on a request to ppge

42 E. Feuerstein and A. Strejilevich de Loma

has a cost of at mostper phase. On the other hand, in any phaskstinct pages are
requested, and the first requested page of the next phase is different frork pauses;
this implies that any algorithm must have at least one fault per phase.

3.2. Off-Line Service

LEMMA 1. Leto be asequence of-d1requestschosen from a set of at most d distinct
pageswith d > k. There exists an off-line algorithm thatarting with k of those pages
in the cacheservess with at most d— k page faults

PrOOF The algorithm is Farthest-in-the-Future (FF), also called MIN because it is an
optimal off-line algorithm for Paging [2]. Each time a page fault occurs, FF evicts the
page that appears farthest in the unserved part of the input sequence.

Suppose that every page that FF evicts is never requested again. This means that every
request that produces a fault corresponds to a page that FF never had in the cache before
the moment in which the fault occurs. Since there are at vhesk pages that initially
FF does not have in the cache, the cost of FF cannot exteekl

On the other hand, consider the last requastat produces the eviction of a page
that is requested later. From the behavior of FF we know phiatevicted because the
otherk — 1 pages of the cache appear befpri@ the unserved part af. Sincer is the
last request that produces the eviction of a page that is requested latek thageges
will be in the cache of FF when requested, and then FF does not fault dt ledgimes.

Thus in this case the cost of FFisat mast— (k — 1) =d — k. O

COROLLARY 2. Leto be a sequence of requesthosen from a set of at most d distinct
pageswith |o| > k and d> k. There exists an off-line algorithm that servesvith at
most k+ (d — k)[(lo| — k)/(d — 1)] page faults

ProOF Consider an off-line algorithm that starts by loading into the cache thefirst
different pages that appeardn With this content in the cache, the algorithm can serve

at least the firsk requests o&, with a total cost ok up to that moment. After that, the
algorithm splits the (at mod | — k) remaining requests into sectorsbt 1 consecutive
requests each, and serves each sector using FF. By Lemma 1, the new algorithm has at
mostd — k page faults in each sector, which proves the claim. O

4. Finite Multi-Threaded Paging. In this section we consider FMTP, the finite ver-
sion of MTP. In this version of the problem each sequence contains a finite num-
ber of requests, and every algorithm must serve all those requests. We start with
a technique useful for obtaining lower bounds on the competitiveness of on-line
algorithms for both the fair and unfair cases of FMTP. After that, we analyze them
separately.

4.1. How to Prove Lower Bounds The following lemma is a rephrasing of atechnique
that has been used often in the literature of single-threaded on-line problems.

On-Line Multi-Threaded Paging 43

LEMMA 3. Let A be any on-line algorithm for FMTRf there exist a constant E and
an infinite familyF of input tupless such that

1. for all o € F we have G(o) > cCopr(o) + E, and
2. the value of (o) is not upper bounded i,

then A is not better than c-competitive

ProOOF The proof follows by contradiction. Suppose that the conditions hold and that
Ais (c — ¢)-competitive for some > 0. Then there exists a constadbtsuch that, for
allo € F,

D > Ca(o) — (¢ — &)Copt(0) = cCopr(0) + E — (C —)Cop1(0) = E + £Copt(0),

that is,Copt(c) is upper bounded itF. However, by hypothesiSa (o) is unbounded in
F, so A cannot be competitive, a contradiction. O

4.2. The Unfair Finite Problem Although in FMTP every algorithm must serve the
same set of requests, the order in which those requests are served is decided by each
algorithm. We use this property to obtain a lower bound for Unfair-FMTP. The lower
bound does not match the upper bound we present later; however, if we restrict to normal
Paging (v = 1) it is the best possibl&k]. As is usually done in competitive analysis,

we compare on-line strategies with adversarythat chooses the input and serves it
optimally.

THEOREM4. No on-line algorithm for Unfair-FMTP is better thatk + 1 — 1/w)-
competitive

PROOF We use Lemma 3 to prove the lower bound. Let A be any on-line algorithm.
Let m = nk, wheren is any positive integer. Consider a d¢tof w(k + 1) pages,
partitioned intow disjoint subset&J, U,, ..., U,, each one ok + 1 pages. Sinc&

is the size of the cache, in any configuration of A there is at least one page of/each
missing from A. The first request of each sequeside to a page ofJ; that is not present

in the initial configuration of A. Each new request&fis to a page ofJ; not in A's
cache after the algorithm serves the previous request of the same sequengéeltbe

last sequence of which A serves timth request. The other sequences have exaatly
requests, while; continues with the concatenation in any order of the other sequences,
e.0.,01, 02, ..., 0j_1, 0j+1, - - . , Oy, (S€€ Figure 2). By construction A faults on each one
of the firstm requests of each sequence, with a cost of at least When A serves

the mth request o, it must still serve the remaining requests of that sequence. This
cannot require less than the cost incurred by an optimal off-line algorithm that serves
those requests starting with the same cache as A. If we dendRetest optimal cost,

we have

Ca(o) > wm+ R.

Let CiOPT be the optimal off-line cost for serving the firstrequests of; . By Corollary 2
we know that¥i) Ci,pr < s = k4 n — 1, and then the optimal off-line cost for serving

44 E. Feuerstein and A. Strejilevich de Loma

(221 e o e T

s, .

Fig. 2. Sequences used in the proof of Theorem 4.

all the requests is

w

Cop1(0) < Z Chpr < WS,
=

because the adversary can servand at the same time serve the corresponding requests
of the other sequences (with no additional cost for those last sequences). It is also true
that

Cop1(0) < Chpr+k+ R<s+k+R,

because the adversary can serve therirstquests o0&, and then serve the remainder
of that sequence starting with the same cache as A. Sinte- wks— wk(k—1), using
standard calculations we obtain

Ca(o) > wm+ R> wm+ Copr(c) —S—Kk

= (k—1/w)ws+ Copr(c) — wk(k — 1) — k
(k = 1/w)Cop1(0) + Copt(0) — wk(k — 1) — Kk
(k+1—-1/w)Copr(o) — wk(k — 1) — k.

v

This and the fact thafa (o) is unbounded for the family of instances, imply the result
by Lemma 3. O

We now present an on-line algorithm for Unfair-MTP. We call the algorithm
Alternating—Flush-When-Full (AFWF), and it is described in Figure 3. The algorithm
works in rounds; each round consists of applying a phase of FWF to each sequence
01, 02, ..., 0. In Unfair-FMTP the algorithm must check whether the sequences are
over. We will see now that AFWF iwk-competitive for that problem.

THEOREMS. Algorithm AFWF iswk-competitive for Unfair-FMTP

On-Line Multi-Threaded Paging 45

While there is at least one request to be served do
% a new round starts
i—1
While ¢ < w do
% a new phase starts
Apply FWF to o; for a phase or till the sequence is over
L=+l
end While
end While.

Fig. 3. Algorithm Alternating—Flush-When-Full.

PrOOF By definition of AFWF, the cost of each one of the phases of a round is at most
k, and thus the cost of each round is at mokt Suppose that for serving all the requests
AFWF stopped in thém + 1)st round, eventually with the last round incomplete. Then
its total cost is

Carwr(o) < wkm+ wk.

Let o; be a sequence that finished when AFWF was in its last round. Restricted to
aj, in any roundk distinct pages are requested, and the first requested page of the next
round is different from thosk pages. Hence the adversary must have at least one fault
per completed round, and then we have

Copt(0) = m,
which implies

Carwr(o) < wkCopr(o) + wk. a

Let A be any on-line algorithm for Paging. If we use A to serve completely each one
of thew sequences of requests, we obtain an on-line algorithm for Unfair-FMTP. It is not
difficult to show that if A isc-competitive, then the resulting algorithm for Unfair-FMTP
is wc-competitive. This means that akycompetitive Paging algorithm definesugk-
competitive algorithm for Unfair-FMTP. However, we prefer AFWF because algorithms
of the type just described can behave very “unfairly”; in addition, AFWF can be used in
the infinite problem.

Recently, Feuerstein et al. [6] have obtained a stro&gériog w) lower bound for
Unfair-FMTP. For completeness we present the result, without a proof.

THEOREMG6. Letc < (0.5/logw] + 1)k/e. Let D be any constanfor every on-line
algorithm A for Unfair-FMTP there exists an input tuptesuch that

1. |o| — cCop1(c) > D, and
2. for every? < |o| the cost of A for serving requests fronw is at least¢ (in other
words o is the nemesis for)A

COROLLARY 7. No on-line algorithm for Unfair-FMTP is better thg0.5(logw | +
1)k/e]-competitive

46 E. Feuerstein and A. Strejilevich de Loma

4.3. The Fair Finite Problem We now analyze FMTP in the case in which fairness
restrictions are explicitly imposed. Recall that fairness is modeled by considering an
integert such that at mogtother requests can be satisfied since the moment any request
is seen till the moment that request is served. The minimum possible valuis for- 1.

A straightforward lower bound for the competitiveness of on-line algorithms for Fair-
FMTP can be obtained by considering an instance formed ligentical sequences,
each one like the sequence used in the proof of the lower bound for normal Paging [16].
The following theorem formalizes this argument.

THEOREMS8. No on-line algorithm for Fair-FMTP is better than k-competitiegen if
we restrict the sequences of requests to be formed by at mestdistinct pages

PrROOF Let A be any on-line algorithm. Ldt) be a set ok + 1 distinct pages. We
construct the input tuple by rows, all the requests in each row to the same page. The
requests of the first row are to a pagelbinot in A's cache at the beginning, and the
requests of each new row are to a page aiot in A's cache after the algorithm serves the

first request of the previous row. This guarantees that A faults at least once per row. The
adversary chooses any fixed order for the sequences, and cyclically serves one request
of each sequence. This behavior is fair for any w — 1, and allows the adversary to

fault only once everk rows. O

Without fairness restrictions, a smart on-line algorithm for FMTP could delay serving
sequences that look “too hard.” When fair behavior is imposed, an on-line algorithm can
be forced to serve with high cost requests that could be served more efficiently by
delaying them. The following theorem exploits this fact to prove that in general there is
no competitive on-line algorithm for Fair-FMTP.

THEOREM9. Thereis no competitive on-line algorithm for Fair-FMTP witkrtw > 2,
even if we restrict the sequences of requests to be formed by at mostdistinct
pages

PrROOF Let A be any on-line algorithm. Given any pair of constand D, we will
show an input tuple for which Ca (o) — cCopr(c) > D. This will prove the claim.
Let n be a “big” positive integer that we fix later. Let = {a, by, b, ..., b} be a set
of k + 1 distinct pages. Let)’ = U — {a} = {by, b, ..., bc}. The firstn requests of
every sequence are to page et o, andog be two sequences such that A servegithe
request o, before the algorithm serves théh request oby (remember thai > 2).

We choose the following requests so as to makeery expensive i, is served
together with the initial part ofq, but cheap if several requests®f are served first.
The algorithm A will act the first way to satisfy the fairness constraint, and so it will
have a high cost. The off-line adversary will delay the requesis, ointil it has served
the initial requests oy, bounding its cost by a constant.

After thenth request o0&, the sequence continues with requests to phges, .. .,
bk repeatedly. On the other hangl, continues withn more requests to page The
requests not mentioned above are to arbitrary pages (see Figure 4).

On-Line Multi-Threaded Paging 47

Fig. 4. Sequences used in the proof of Theorem 9.

Notice that, in every group @f+ 1 consecutive requests that any fair algorithm serves,
it must satisfy atleast one request and at mast — (w — 1) x 1 = t —w + 2 requests of
each sequence (assuming that allihgequences are active). In every grougtef 1)k
consecutive requests, the number of served requests of each sequence is baiwgeen
(t —w+2)k. When A serves theth request oéy, there aren pending requests to page
in that sequence, whilg, repeats requests to padmsby, . . ., bx. Before A terminates
with all the requests to pagein o, in every group ofit + 1)k consecutive requests
the algorithm must satisfy at ledstequests to pagein oy, and at least one request to
each pagé,, by, ..., b in o,. These ard + 1 distinct pages, and hence the cost of A
for serving each group @f + 1)k consecutive requests is at least 1. If the sequences are
long enough, this occurs a minimum pmj times until A serves all the requests
to pagea in oq. Therefore the total cost of A for sufficiently large sequences is

a—w+ad'

We now consider the adversary’s cost. Being thatw, for eachw + 1 requests the
adversary can serve one requestgfind one request of each one of thesequences
(includingoy). This behavior ensures that in the fifgt+ 1)n steps the adversary serves
the 2 requests to page in o4, and then requests to that page in the other sequences.
The cost for doing that is at most 1. All the other requests are to pag¥srhe size of
the cache ik and there ar& pages inJ’. Then the adversary can serve the remaining
requests with a cost of at mdstand therefore we have

Ca(o) Z{

Copt(0) < 1+ k.

To conclude the proof we only need to fix the valuamobefinen(x, y) = (t —w +
2)k[x 4+ xk + y], and choose any > n(c, D + 1). Then we have

n
Ca(o) — cCopr(0) = \\mJ —c(1+Kk)

[c+ck+D+1]—-c(l+ky>D+1> D,

v

and the result follows. O

48 E. Feuerstein and A. Strejilevich de Loma

Extremely tight fairness restrictions The preceding theorem does not cover the cases
of Fair-FMTP in whichw = 1 ort = w — 1. With w = 1 fairness restrictions have

no sense, and we are faced with regular Paging. On the other hand, the-case- 1
requires further analysis. It is worthwhile distinguishing two different situations of Fair-
FMTP witht = w — 1. The first one is while all the sequences are active, and the other
one is when one or more sequences have finished.

While all the sequences are active the algorithms (on-line or not) must apply a round-
robin strategy, i.e., serve one request of each sequence in a fixed order which is repeated
over and over again. This implies that after eacmew requests, the set of requests
served by any algorithm is the same. This particular situation of Fair-FMTP is closely
related to normal Paging, since after an algorithm has chosen the order in which to
serve the requests, we can think that there is only one sequence to be served, as is
the case in Paging. Nevertheless, the following points show that the two problems are
different:

e In Fair-FMTP we can say that any algorithm has served the same set of requests only
after eachw new requests (after each row of requests), not at every step as in Paging.

¢ Algorithms (of any type) can choose betweehdistinct orders of the sequences.
However, off-line algorithms can choose with information on the whole input tu-
ple, while on-line algorithms must base their decisions only on the first requests of
each sequence. Moreover, any choice made by an on-line algorithm can be fooled
if the first two requests of all the sequences are to the same page. In other words,
from a competitive analysis point of view, off-line algorithms can really decide in
which order to serve the sequences, while the choice of an on-line algorithm is an
illusion.

e On-line algorithms can see the followingrequests to serve, not only one of them.
More precisely, on-line algorithms can make use of a lookahead ofisiZéis is not
a clear advantage for on-line algorithms, since this kind of lookahead can be easily
neutralized by replacing each request witliequests to the same page.

As soon as a sequence finishes in Fair-FMTP with w — 1, distinct algorithms
can serve the remaining requests in very different ways. This can be used to extend
Theorem 9 to the cate= w — 1 andw > 3. The idea of the proof consists of making
the on-line algorithm serve a first sequence of length 1.

COROLLARY 10. There is no competitive on-line algorithm for Fair-FMTP with=
w—landw > 3 ({t = w — 1 > 2), even if we restrict the sequences of requests to be
formed by at most k- 1 distinct pages

PROOF Let A be any on-line algorithm. Léd = {a, by, by, ..., b} beasetok + 1

distinct pages. The first request of every sequence is to @a§mcet = w — 1, any
algorithm must start by completely serving the first row of requests. The first sequence
that A serves terminates immediately. Thus, at the end of the first row of requests, the
number of active sequencesu$ = w — 1, witht = w’ > 2. From that point on, we
repeat the construction of Theorem 9. Reasoning as in that theorem we obtain that the
total cost of A is at Ieasﬁ(t_T'er)kJ.

On-Line Multi-Threaded Paging 49

While there is at least one request to be served do
% a new super-phase starts
Apply a phase of FWF to the sequence ¢* formed by taking in turn
one request of each active sequence o0y,03...., O
Serve the next request of ¢* (no matter how)
Serve all the pending requests of ¢~ in the same row
of the last served request (no matter how)
end While.

Fig. 5. Algorithm Round-Robin—Flush-When-Full.

The adversary can serve the first row of requests in the order that A does. After that,
for eachw’ 4 1 requests the adversary can serve one request afid one request of
each one of thev” active sequences (includirg). With this behavior the adversary
honors the fairness constraint, and has a total cost of at mpst 1

The proof concludes as in Theorem 9, by choosirgs large as needed. O

We have seen in Theorem 9 and Corollary 10 that the only case of Fair-FMTP in
which competitive on-line algorithms can exist is whea w — 1 andw = 2. For this
case the lower bound of Theorem 8 holds; a competitive on-line algorithm is presented
now.

A possible on-line algorithm for Fair-MTP is Round-Robin—Flush-When-Full
(RRFWEF), which is described in Figure 5. The algorithm works in “super-phases”;
each super-phase consists of applying a phase of FWF to the sequence formed by taking
in turn one request of each sequengeo,, ..., oy, and then serving the next request
and all the other pending requests in the same row; these additional requests are served by
RRFWEF in an arbitrary deterministic way. In the finite problem the algorithm must check
for end-of-sequence. Note that due to the additional requests served in each super-phase,
whenw = 1 RRFWFis notequivalent to FWF. Clearly, RRFWF is fair for any legal
value oft. We show now that it ik + w)-competitive for Fair-FMTP with = w — 1
andw = 2.

THEOREM11. Algorithm RRFWF igk+w)-competitive for Fair-FMTP witht= w—1
andw = 2.

ProoF By definition of RRFWF, the cost of each super-phase does not exceed

1+ (w — 1) = k+ w. Suppose that for serving all the requests RRFWF stopped in the
(m+ 1)st super-phase, eventually with the last super-phase incomplete. Hence we have
for its total cost

Crrewe(0) < (K+w)m+ K+ w.

Note that any algorithm must serve the requests row by row: while all the sequences
are active, thisis true due to the fact that w — 1; when one of the (two) sequences has
finished, this trivially holds. Therefore, at the end of each one of the completed super-
phases the adversary must have served the same requests as RRFWF, because RRFWF
only terminates a super-phase when it has completely served some row. Since in each

50 E. Feuerstein and A. Strejilevich de Loma

super-phase at ledst- 1 distinct pages appear, the adversary must fault at least once in
each completed super-phase, and then we have

Copt(c) = m,
so

Crrrwr(0) < (K4 w)Copt(0) + K + w. O

We must point out that no general on-line algorithm for Fair-FMTP beats RRFWF:
in [17] it was proved that no on-line algorithm for Fair-FMTP wite= w — 1, evenw,
andk = 1 is better thartk + w)-competitive.

5. Infinite Multi-Threaded Paging. In this section we analyze IMTP, that is, MTP

with infinite input sequences. As we did in Section 4, we first present some general
results about the problem. After that we consider separately the fair and unfair cases.
For each one of these cases we analyze IMTP under the three competitiveness models
introduced in Section 2.

Some of the results included in this section establish distinct equivalencies between
the competitiveness models. We mainly use two types of arguments to establish those
results. The first one is eeplacementargument: given an on-line algorithm and an
input tuple in which the algorithm behaves poorly, we replace some of the unserved
requests of the input tuple with “cheap” requests; the on-line algorithm still has a bad
performance in the modified input tuple, even when the number of requests to serve tends
to infinity. The second type is eoncatenatiorargument: given an on-line algorithm,
we concatenate parts of input tuples (in which the algorithm behaves poorly) to form
another input tuple; this last input tuple is finally presented to the on-line algorithm. A
concatenation argument was used in [14] to show that the competitiveness achievable
by deterministic on-line algorithms for Paging is the same on finite sequences and in the
limit. Nevertheless, the argument does not translate directly to MTP, since at each step
different algorithms may have served different sets of requests.

5.1. General Results Itis easy to see that our three performance measures are mono-
tonically weaker. We use this fact repeatedly within this section.

THEOREM12. Let A be any algorithm for IMTRf A is c-competitive under the every-
step modelthen it is c-competitive under the constant-limit model

ProOF The proof follows directly from the definitions of the two models. |

THEOREM13. Let A be any algorithm for IMTPIf A is c-competitive under the
constant-limit modelthen it is c-competitive under the variable-limit madel

PrOOF The proof follows directly from the definitions of the two models. O

On-Line Multi-Threaded Paging 51

We now present tools that allow us to obtain lower bounds on the competitiveness of
on-line algorithms for IMTP.

LEMMA 14. Let A be any on-line algorithm for IMT.Rf there exist a constant E and
an infinite familyF of pairs (o, £) such that

1. for all (o, £) € F we have G(o, £) > cCop1(o, ¢) + E, and
2. the value of G (o, ¢) is not upper bounded ifF,

then A is not better than c-competitive under the every-step model
PROOE Replace syntacticallge) by (o, ¢) in the proof of Lemma 3. O

LEMMA 15. Let A be any on-line algorithm for IMT.Rf there exist a constant E and
an infinite familyF of pairs (o, £) such that

1. for all (o, £) € F and for all¢’ > ¢ we have G (o, £') > cCopt(o, £') + E, and
2. the value of G (o, ¢) is not upper bounded iff,

then A is not better than c-competitive under the constant-limit model

PrROOFE AsinLemmas 3 and 14, the proof follows by contradiction. Consider a constant
¢ > 0. By hypothesis we know that for alt, £) € F and for all¢’ > ¢,

Ca(o, ") — (c — &)Copr(o, £') > cCopr(o, ') + E — (c —)Copr(0, £')
= E + ¢Cop1(o, 6/).

Now assume that A i&c — ¢)-competitive. Then there exists a const@Bnsuch that

D > limsupCa(o, £) — (¢ — &)Copt(c, £') > E + ¢ limsupCopt(o, £').
0 —o00 {'— 00
Since the cost is a non-decreasing function of the number of served requests, the above
expression implies thafopt(o, £) is upper bounded i, preventing A from being
competitive becausgp (o, £) is unbounded irF. O

5.2. The Unfair Infinite Problem At each step of IMTP each algorithm may have
served different requests. Based on this fact we now prove a lower bound for Unfair-
IMTP under the every-step model.

THEOREM16. No on-line algorithm for Unfair-IMTP is better thamk-competitive
under the every-step model

PrROOF We use Lemma 14 to prove the claim. Let A be any on-line algorithm. Let
m = nk, wheren is any positive integer, and consider a Bef pages, partitioned
into w disjoint subsetdJ;, U, ..., U,,, each one ok + 1 pages. The input tuple is
constructed as in Theorem 4 until A serndes wm requests. In this way A necessarily
faults on each one of these requests, and its cost is

Ca(o,£) > wm = wnk.

52 E. Feuerstein and A. Strejilevich de Loma

o1 e 0y e Oy

1]t

p
Fig. 6. Sequences used in the proof of Theorem 16.

Leto; be the last sequence of which A servestiiia request, or a sequence such that A
does not serve itsith request at all. Now supposg continues with repeated requests
to pagep which is themth request ob; (see Figure 6). By Corollary 2 the sequence
oj can be served with at mokt- n — 1 page faults, with no cost after tingth request.
Since the adversary can just serve requests trever, the optimal off-line cost is

Copt(0,£) <k+n-—1
Then we have

Ca(o,£) > wnk = wk(k+n—1) — wk(k — 1) > wkCppt(o, £) —wk(k —1). O

We will see now that algorithm AFWF, proposed for Unfair-FMTP and described in
Figure 3, is strongly competitive for Unfair-IMTP under the every-step model.

THEOREM17. Algorithm AFWF iswk-competitive for Unfair-IMTP under the every-
step model

PrROOF The proof is very similar to that of Theorem 5. Suppose that dftequests
AFWF completedn rounds and is currently in th@n + 1)st round. Then its cost is

Carwe(o, £) < wkm+ wk.
There must be at least one sequence for which the adversary served at least as many
requests as AFWF in that sequence. &gebe such a sequence. Restricteditpin any
roundk distinct pages are requested, and the first requested page of the next round is

different from those&k pages. This means that we can charge to the adversary at least a
cost of 1 for every completed round, and hence we have

Copt(0,£) = m,
which implies

Carwr(o, £) < wkCopr(o, £) + wk. 0

We have presented in Theorems 16 and 17 lower and upper bounds for Unfair-IMTP
under the every-step model. We now extend those results to the constant-limit model.

On-Line Multi-Threaded Paging 53

THEOREM18. Let A be any on-line algorithm for Unfair-IMTPThen the following
statements are equivalent

() A'is c-competitive under the every-step model
(I A'is c-competitive under the constant-limit model

PROOE We proved in Theorem 12 that @& (I1). To prove that (I)= (1), we will see
that—(l) = —(Il). Let D be any constant. Sineg(l) holds, there exist and¢ such that

Ca(o,£) — cCopr(0,£) > D+ 1+c.

After servingt requests, there must be at least one sequgnice which the adversary

has served at least the same number of requests as A in that sequence. Thejpart of
that none of the algorithms has served may contain requests only to some particular
page. The adversary can serve any number of those requests with at most one new page
fault. On the other hand, the cost of A for serving additional requests cannot decrease.
Therefore, for any number of requegts> ¢ we have

Ca(o,¢) > Ca(o, £)

and
Copt(o, ¢') < Coprl(o, £) + 1,

which implies
Ca(o, ") — cCopr(0, ¢') = Ca(0,€) — cCopr(0,{) —c> (D+1+c)—c=D+1,
and then

limsupCa (o, £') — cCopr(o, £) > D+1> D. O

t'—o00

So far we have shown that our on-line algorithm AFWR ks competitive for Unfair-
IMTP under the every-step and constant-limit models, and we have provided a matching
lower bound. Therefore Unfair-IMTP is closed under those two models. By Theorem 13
we know that AFWF iswk-competitive also under the variable-limit model. We were
not able to prove whether AFWF is optimal (strongly competitive) under this last model.
However, we will obtain from the finite version of the problem a lower bound for Unfair-
IMTP under the variable-limit model.

LEMMA 19. Given a constant,df for every on-line algorithm A for Unfair-FMTP there
exists a finite input tuple such that

1. |o| — cCopr(c) > 1,and
2. for every? < |o| the cost of A for serving requests fronw is at least,

then no on-line algorithm for Unfair-IMTP is c-competitive under the variable-limit
model

54 E. Feuerstein and A. Strejilevich de Loma

PrROOFE Let IA be any on-line algorithm for Unfair-IMTP, and IADV an off-line adver-
sary. Let ADV be an off-line adversary for Unfair-FMTP that is able to build an input
tuple that fulfills the two conditions mentioned above. bebe any positive integer.
Roughly speaking we concatenate finite input tupleso as to obtain an infinite input
tupleoia such thatCia (o1a, £) — cCopt(oia, £) is not upper bounded.

The adversary IADV simulates ADV to decide the initial requests of each sequence of
oa. The first time that, following the construction of ADV, a sequence should terminate,
IADV starts simulating a new instance of ADV to extend that sequence. This second
ADV is also used to extend the other sequences when, according to the first ADV, they
should terminate. In general, the first time that, following the construction oftthe
ADV, a sequence should terminate, IADV starts simulatingian 1)st ADV to extend
the sequences. Each new ADV works over a completely new set of pages(i Léte
the (finite) part ofo;o generated while simulating thiéh ADV. By hypothesis, we can
charge unitary cost to IA for each request it serves. Hence its cost fer) ", o (i)|
requests is

m

Cia(01a, Sm) = Sm = Z lo ().
i=1
The adversary IADV can optimally serve the requests @, then the requests of(2),
and so on. Thus, it is clear that

Cop(0ia, Sm) < ZCOPT(U(i))~
i—1

Then we have

m

Cia (01, Sm) — €Copt(ia, Sn) = Y [lo ()] — cCopr(a ()] = D 1=m.
i=1

i=1

Sincem was any positive integer, the result follows. O

COROLLARY 20. No on-line algorithm for Unfair-IMTP is better tha(0.5|logw| +
1)k/e]-competitive under the variable-limit model

Proor The claim follows from Theorem 6 and Lemma 19. O

5.3. The Fair Infinite Problem Theorem 9 states that in general there is no competitive
on-line algorithm for Fair-FMTP. If we consider infinite input sequences in the proof
of that theorem, it is straightforward to extend the result to Fair-IMTP under the every-
step and constant-limit models. In fact, the result is valid under the three performance
measures used for IMTP, as the following theorem shows.

THEOREM?21. There is no competitive on-line algorithm for Fair-IMTP withrtw >
2, under the every-steponstant-limit and variable-limit modelseven if we restrict the
sequences of requests to be formed by at masfidistinct pages

On-Line Multi-Threaded Paging 55

ProoOE By Theorems 12 and 13, it is enough to prove the claim for the variable-limit
model. Let A be any on-line algorithm. Given any constentve will show an input
tuple o for which Ca (o, £) — cCopt(o, £) is not upper bounded, proving the theorem.
In order to build the input tuple we repeatedly apply the construction of Theorem 9. Let
n>n,1=(t—w+2k[c+ck+1]. LetU ={a, by, by, ..., bk} beasetok +1
distinct pages. Let)’ = U — {a}. The firstn requests of all the sequences are to page
a. Letop, andog, be two sequences such that A servesritterequest obp,, before

the algorithm serves theth request oby,. The sequence,, continues with requests

to pagedy, by, . . ., bk repeatedly, whilerg, continues withn more requests to page
Assume that the requests not mentioned above are to arbitrary pddésirasoning

as in Theorem 9, it is not difficult to show the following facts: since the moment that A
serves thath request ofg, until the moment that A satisfies all the requests to zeige
that sequence, the algorithm has a cost of at least 1 in every grouyp dfk consecutive
requests that it serves; moreover, this occurs a minimQr&%J times; on the other
hand, the adversary can serve the complete input tuple with a cost of at mdstLiet

1 be the number of served requests when A satisfies the last request ta pags.
Based on the above-mentioned facts, we have

Ca(o, £1) —cCopt(o, £1) > \\ —C(1+k) > fC—I—Ck—i—ﬂ —C(1+k) > 1.

n
t—w+ 2)kJ
Now imagine (only for the purposes of the analysis) that A temporarily stops serving
requests while the adversary continues until it has served more requests than A in all the
sequences. The adversary can change the requests that it has not served, because A has
not seen them. The modified part starts withrequests to page in all the sequences.

Now suppose that A continues serving requests, angpleindog, be two sequences
such that A serves theth request of the modified part 6f, before the algorithm serves
the nth request of the modified part of,. The sequence,, continues with requests
to pagesy, by, . .., by repeatedly, whiler,, continues wittn more requests to page
Again the remaining requests are to arbitrary pagds’in_et ¢, be the total number
of requests served by A when it satisfies all the requests to paBeasoning as in
Theorem 9 for the modified part of the input tuple, we obtain

Ca(0. £2) = Calo, t2) + {ﬁj

and
Copt(o, €2) < Copt(o, £1) + 1 +K,
and then

Ca(o, £2) — cCopt(o, £2) = 2.

The adversary can change the requests that A has not seen as many times as desired.
This implies that for any positive integar there is a number of requedtg such that

Ca(o, €m) — cCopt(o, £m) = M,

which proves the theorem. O

56 E. Feuerstein and A. Strejilevich de Loma

It is worthwhile noting that in [8] it was proved that under the every-step model,
the above result is valid even if the adversary has a cache of size 1. The proof uses an
adversary that does not serve the requests that are expensive for the on-line algorithm.
That very strong result does not seem to be achievable under the other two models.

Extremely tight fairness restrictions Note that Theorem 21 excludes an interesting
case, that is, the case= w — 1. In this case the situation is the same as in the finite
version while all the sequences are active, so the discussion in Section 4.3 is valid here. As
a consequence we have results analogous to those obtained for the finite problem. Under
the every-step model a lower boundlofs straightforward, and our on-line algorithm
RRFWEF (Figure 5) isk + w)-competitive.

THEOREM?22. No on-line algorithm for Fair-IMTP is better than k-competitive under
the every-step modedven if we restrict the sequences of requests to be formed by at
most k+ 1 distinct pages

PrOOF The proof is almost the same as Theorem 8, although with infinite
sequences. O

THEOREM23. Algorithm RRFWF igsk+ w)-competitive for Fair-IMTP witht= w—1
under the every-step model

PROOF Suppose that aftérrequests RRFWEF is in then + 1)st super-phase. Then its
costis

Crrrwr(0, £) < (K+w)m+ K+ w.

As in Theorem 11, at the end of each super-phase that RRFWF has completed the
adversary must have served the same requests as RRFWF. Since in each super-phase at
leastk + 1 distinct pages appear, the adversary must fault at least once in each completed
super-phase, and then we have

Copt(o, £) = m,
S0

Crrewr(0, £) < (K4 w)Copt(o, £) + K+ w. O

We now extend the lower and upper bounds of the previous two theorems to cover
Fair-IMTP witht = w — 1 under the three competitiveness models. We will prove the
equivalence of the three models using the fact that in Fair-IMTP withw — 1, after
eachw requests any algorithm must have served the same set of requests.

THEOREM24. Consider the problem IMTRind suppose that the algorithms are re-
stricted to serving the requests row by rtag, for examplein Fair-IMTP witht = w—1).
Then the following statements are equivalent

(I) there exists a c-competitive on-line algorithm under the every-step model
(I) there exists a c-competitive on-line algorithm under the constant-limit model
(1M there exists a c-competitive on-line algorithm under the variable-limit model

On-Line Multi-Threaded Paging 57

PrROOFE We sawin Theorems 12 and 13 that) (Il) and that (Il) = (lIl), respectively.
To finish the proof we will see thai(l) = —(lll). Let A be any on-line algorithm for the
problem. We will show an input tuple such thatCa (o, £) — cCopt(o, £) is not upper
bounded. LeD = 1+ c(2w — 1). Since—(l) holds, there exist- and¢; such that

Ca(o, £1) — cCop1(o, £1) > D.

After £, requests, A has not seen the requests that are after the row number
[¢1/w] + 1. To terminate that row the algorithms must serve at mast-21 new
requests, and at the end of the row the costs will be

Ca(o, wry) = Ca(o, £1)

and
Copt(o, wry) < Copt(o, €1) + 2w — 1.

Therefore we have

Ca(o, wry) — cCopr(o, wr1) > Cal(o, £1) — cCopr(o, £1) — C(2w — 1)
>D-cPw-1 =1

From that point on, the adversary can cyclically start a new construction as in the be-
ginning. In general, for any positive integerthere exist a number of requegtsand a
row numberr, = [£m/w] + 1 such that

Ca(o, wry) — cCopt(o, wry) > m. |

In [17] it was proved that no on-line algorithm for Fair-IMTP with= w — 1, even
w, andk = 1 is better thank + w)-competitive under the every-step model. Hence,
by Theorem 24 it follows that no general on-line algorithm for Fair-IMTP outperforms
RRFWF, under none of the three competitiveness models.

If we exclude the variable-limit model in Theorem 24, we are able to prove a stronger
result.

THEOREM25. LetAbe anyon-line algorithm for IMTBnd suppose that the algorithms
are restricted to serving the requests row by r(ag, for examplein Fair-IMTP with
t = w — 1). Then the following statements are equivalent

() Ais c-competitive under the every-step model
(I A'is c-competitive under the constant-limit model

PROOF From Theorem 12 we know that (> (Il), and then we only need to prove
that—(l) = —(Il). Let D be any constant. Sine&(l) holds, there exist and¢ such that

Ca(o,£) — cCopt(o,£) > D + 1+ 2wec.

After £ requests, A has not seen the requests that are after the row nusabjeéy w1+ 1.
The adversary has at most2- 1 page faults to serve that row completely. After that, if

58 E. Feuerstein and A. Strejilevich de Loma

the same page is requested over and over again the adversary has at most one new page
fault. Thus, the optimal off-line cost for any number of requésts wr is

Copr(o, ') < Copr(o, £) + 2w.

The cost of A cannot decrease when the number of served requests grows, and then we
have

Ca(o, £") — cCopr(o, £') > Ca(o, £) — cCopr(o, £) — 2wC
> (D+1+42wc) —2wc=D +1,

and so

limsupCa(o,) — cCopr(0,¢) > D +1> D. O

t'—o0

6. Conclusions, Further Research, and Open Problems.In the same way that Pag-

ing has been a paradigmatic problem for traditional competitive analysis, the different
variants of MTP that we discussed in this paper can serve as a first step toward establish-
ing a general framework for multi-threaded on-line problems. New issues characteristic
of this family of problems (mainly fairness and infinite inputs) have been deeply studied,
deriving conclusions that may be generalized and extended to other problems. Our main
goal is now to extend all our definitions to the multi-threaded versions of, for example,
Metrical Task Systems; we already have some results in that direction [7].

Table 1 summarizes the competitiveness results presented in this paper. A conclu-
sion that arises clearly from our work is that when fair behavior is imposed, things are
much harder for on-line algorithms, to the extent that there are no competitive on-line
algorithms in general. An interesting research direction is that of modeling fairness re-
strictions in a different way. One possibility is to strengthen the definition by considering
(instead ot) an integes with the following meaning: the difference between the number

Table 1. Summary of our results.

Unfair-FMTP Unfair-IMTP

Lower bound Upper bound Lower bound Upper bound

An kK+1l—1/w? k wk k
Vw w w (0.5/logw] + 1)k/e® w
Fair-FMTP Fair-IMTP

Lower bound Upper bound Lower bound Upper bound
t>w>2 00 — 00 —
t=w-1andw >3 00 — k K+ w
t=w-1andw =2 k K+ w k K+ w

a A better lower bound 0f0.5logw] + 1)k/eis given in [6].
b Under the every-step and constant-limit models.
¢ Under the variable-limit model.

On-Line Multi-Threaded Paging 59

of served requests of any pair of sequences can never escdéis or other models
might allow the existence of general competitive on-line algorithms for the fair case.

Onthe other hand, the difference between finite and infinite inputs is not so significant
from a competitive analysis point of view. The deep analysis we have done, considering
three performance measures for the infinite case, shows only subtle differences among
them (most of which can be observed in Table 1). Some of the differences could even
disappear if, for example, a better lower bound is found for Unfair-FMTP.

As can be seen in Table 1, the lower and upper bounds do not coincide in every case,
S0 one goal is to close the existing gaps. Finally, it would be interesting to extend the
work done by Seiden in [15] on randomized algorithms for FMTP and IMTP under the
every-step model to the other models, so as to analyze the relations existing among the
competitiveness models for MTP in a randomized setting.

Acknowledgements. We thank Luis @sar Maian for useful discussions about this
work. We are in debt to Steven S. Seiden for giving us ideas that led to a cleaner proof
of Theorem 9.

References

[1] H.Alborzi, E. Torng, P. Uthaisombut, and S. Wagner. Kkeient problem. IrProceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithpeges 73-82, New Orleans, Louisiana, 5-7
January 1997.

[2] L. A. Belady. A study of replacement algorithms for virtual storage computBM.Systems Journal
5:78-101, 1966.

[3] S.Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power of randomization in
on-line algorithmsAlgorithmica 11:2-14, 1994.

[4] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality of reference.
Journal of Computer and System Scien&§2):244—-258, April 1995.

[5] A.Borodin, N. Linial, and M. E. Saks. An optimal on-line algorithm for metrical task systlmrnal
of the Association for Computing MachineBg(4):745-763, October 1992.

[6] E. Feuerstein, D. G. Robak, and A. Strejilevich de Loma, 2000. Work in progress.

[7] E. Feuerstein, S. S. Seiden, and A. Strejilevich de Loma. On multi-threaded metrical task systems.
Technical Report TR 99-008, Departamento de Compaiatiniversidad de Buenos Aires, November
1999.http://www.dc.uba.ar

[8] E. Feuerstein and A. Strejilevich de Loma. On multi-threaded pagingrdeeedings of the Seventh
International Symposium on Algorithms and Computafl®MAC 96), pages 417-426, Volume 1178
of Lecture Notes in Computer Science. Osaka, Japan, 16—-18 December 1996. Springer-Verlag, Berlin.

[9] E. Feuerstein and A. Strejilevich de Loma. Different competitiveness measures for infinite multi-
threaded paging. Technical Report TR 98-021, Departamento de Conguytdaiversidad de Buenos
Aires, November 199&ttp://www.dc.uba.ar

[10] A.Fiatand A. R. Karlin. Randomized and multipointer paging with locality of referenderdoeedings
of the Twenty-Seventh Annual ACM Symposium on the Theory of Compatieg 626—634, Las Vegas,
Nevada, 29 May—1 June 1995.

[11] A.R.Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caéligayithmicg
3:79-119, 1988.

[12] R. M. Karp. On-line algorithms versus off-line algorithms: How much is it worth to know the future?
Technical Report TR-92-044, ICSI, July 1992.

[13] T. Kimbrel. Interleaved prefetching. IRroceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete AlgorithmgSODA 99), pages 557-565, Baltimore, Maryland, 17-19 January 1999.

60 E. Feuerstein and A. Strejilevich de Loma

[14] P.Raghavanand M. Snir. Memory versus randomization in on-line algoritBslournal of Research
and DevelopmenB8(6):683—707, November 1994.

[15] S. S. Seiden. Randomized online multi-threaded pagdiiogdic Journal of Computings(2):148-161,
1999.

[16] D.D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging K&eamunications
of ACM, 28:202—-208, 1985.

[17] A. Strejilevich de Loma. New results on fair multi-threaded pagiigctronic Journal of SADIO
1(1):21-36, May 199&http://www.sadio.org.ar

