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On-Line Multi-Threaded Paging1

E. Feuerstein2 and A. Strejilevich de Loma2

Abstract. In this paper we introduce a generalization of Paging to the case where there are many threads of
requests. This models situations in which the requests come from more than one independent source. Hence,
apart from decidinghowto serve a request, at each stage it is necessary to decidewhichrequest to serve among
several possibilities.

Four different on-line problems arise depending on whether we consider fairness restrictions or not, with
finite or infinite input sequences. We study all of them, proving lower and upper bounds for the competitiveness
of on-line algorithms.

The main competitiveness results presented in this paper state that when no fairness restrictions are imposed
it is possible to obtain competitive algorithms for finite and infinite inputs. On the other hand, for the fair case
in general there exist no competitive algorithms.

In addition, we consider three definitions of competitiveness for infinite inputs. One of them forces al-
gorithms to behave efficiently at every finite stage, while the other two aim at comparing the algorithms’
steady-state performances. A priori, the three definitions seem different. We study them and find, however,
that they are essentially equivalent. This suggests that the competitiveness results that we obtain reflect the
intrinsic difficulty of the problem and are not a consequence of a too strict definition of competitiveness.
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1. Introduction. ThePagingproblem consists of managing a two-level memory, one
level having limited capacity and fast access (the cache) and the other one having slow
access but potentially unlimited capacity. APaging algorithmis given a sequence of
page references; at each step the algorithm must ensure that the requested page is in
fast memory, perhaps evicting another page to make room for the incoming one. Apage
fault occurs each time a page must be brought into fast memory. The goal of a Paging
algorithm is to minimize the total number of page faults over the sequence of requests.
An on-line algorithmfor Paging must decide which page to evict without knowledge of
future requests, while anoff-line algorithmcan decide based on the whole sequence. On-
line algorithms for Paging have been studied from acompetitive analysispoint of view
in [16], comparing their performance to that of the optimal off-line algorithm. In that
work it was shown that, if the cache can holdk pages, no deterministic on-line algorithm
can be better thank-competitive, that is, guarantee less thank times the optimal off-line
number of page faults on every input; it was also shown that some previously known
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on-line algorithms such as Least-Recently-Used (LRU) and First-In-First-Out (FIFO)
achieve that bound.

In this paper we introduce theMulti-Threaded Pagingproblem (MTP). MTP gener-
alizes Paging to the case in which there is not just one sequence of requests but possibly
many threads. This models situations in which the requests come from more than one
independent source. Hence, apart from decidinghowto serve a request, at each stage it is
necessary to decidewhichrequest to serve among several possibilities. In this case there
is no notion of “sequence of requests” but a more complex pattern that is not captured by
the most general classes of on-line problems proposed in the literature (such as Metrical
Task Systems [5] or Request–Answer Games [3], [12]).

MTP may be interesting from a practical point of view, as it models the situation arising
in multi-tasking systems, wherew independent processes simultaneously present their
requirements of pages of secondary memory that must be brought into fast memory.
At each moment, the system can see only one request per process, precisely the first
unserved request of the sequence of requests that the process presents. Only after serving
the current request of a particular process will the following request of that process be
presented. The system must decide at each step whose request to satisfy, and also (as in
normal Paging) which page of fast memory to remove on a page fault. In other words, it
acts as scheduler and fast memory manager at the same time. The total number of page
faults depends therefore not only on the strategy used to determine how each request is
served but on which requests are satisfied, and when (in which order) this is done.

The problem that we introduce is also theoretically significant since it is, as far as we
know, the first on-line problem in the literature in which there are several servers (each
slot in the cache) and several clients (one for each thread). Indeed, this is the first paper
that considers from a competitive analysis point of view some new issues arising in the
family of multi-threaded problems, such as fairness restrictions and infinite inputs. In
addition, all our definitions may be easily extended to infinite multi-threaded versions of,
for example, Metrical Task Systems. This is the first step toward establishing an adequate
model for analyzing the performance of on-line algorithms for many other interesting
on-line problems with finite or infinite multi-threaded inputs.

The basic definition of MTP suggests two “dimensions” in which the problem can
be analyzed. The first one regardsfairness. Algorithms may simply try to minimize the
number of page faults done while serving a set ofw sequences of requests, or we may
impose additional fairness restrictions, so all algorithms must guarantee that the next
request of each thread will be served within a predetermined finite time.

The second dimension is related tofiniteness. We can consider two different classes
of inputs, namely finite and infinite input sequences. We show that the two definitions
lead to subtly different results. This is in contrast to what happens in the single-threaded
case, for which a paper by Raghavan and Snir [14] compared two alternative definitions
of competitiveness (with finite and infinite input sequences respectively) and showed
that both approaches are equivalent in a deterministic setting.

We consider three definitions of competitiveness for infinite inputs. They can be sum-
marized as follows: The first one assumes that an algorithm that serves infinite inputs
must behave efficiently at every finite stage of the process. The second and third defi-
nitions aim at comparing the algorithms’ steady-state performances rather than to pick
a single moment and count page faults up to that moment. In other words, algorithms
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that treat infinite inputs are not compared at finite stages but when the number of served
requests tends to infinity. The difference between the last two models is given by the
way in which infinite inputs with bounded cost are treated. A priori, the three models of
competitiveness seem different. We study them and find, however, that they are essen-
tially equivalent. This suggests that the competitiveness results that we obtain reflect the
intrinsic difficulty of the problem and are not a consequence of a too strict definition of
competitiveness.

Four different on-line problems arise depending on whether we consider fairness re-
strictions or not, with finite or infinite input sequences. We study all of them, proving
lower and upper bounds for the competitiveness of on-line algorithms. The main com-
petitiveness results presented in this paper state that when no fairness restrictions are
imposed it is possible to obtain competitive algorithms for finite and infinite inputs. On
the other hand, for the fair problems in general there exist no competitive algorithms (al-
though there is an interesting exception in the particular case of extremely tight fairness
restrictions).

Fiat and Karlin [10] have considered a problem related to MTP, in which the input
corresponds to a multi-pointer walk on anaccess graph[4]. Within that framework,
the multiple threads of requests are merged in one input sequence, corresponding to
an interleaved execution of the different threads. The way in which the sequences are
interleaved in [10] is decided in an earlier stage of the process (and is the same for all
algorithms). In contrast, in MTP each algorithm is free to decide (up to a certain limit,
in the case of fairness restrictions) how to interleave the sequences.

Recently, Alborzi et al. [1] have proposed a multi-threaded version of the 1-server
problem. Although the 1-server problem is a generalization of Paging withk = 1, only
finite input sequences are considered in [1], and fairness restrictions are not explicitly
modeled.

Kimbrel [13] analyzed the problem of deciding how to interleave independent se-
quences of operations of two kinds: input/output data prefetches and the consumption
of the data by a processor. In this problem the goal is to minimize the processor’s stall
time on data fetches. The model is based on the fact that in many applications some
lookahead can be assumed, i.e., input/output demands are disclosed to the file system
in advance.

Further work related to the framework that we present in this paper has been done
by Strejilevich de Loma [17], who considered some interesting particular cases; by
Feuerstein et al. [6], who improved some of the results for the finite version; and by
Seiden [15], who gave randomized lower and upper bounds for the problem under the
definitions of competitiveness given in [8].

The remainder of this paper is organized as follows: In Section 2 we formally introduce
the four different versions of our problem, that is, the finite and infinite versions, with
and without fairness restrictions. Moreover, we introduce the different definitions of
competitiveness that may be used for evaluating the performance of on-line algorithms
for the different versions of MTP. Section 3 presents some basic material related to
normal Paging that is used later. Sections 4 and 5 are devoted to the study of the finite and
infinite versions of MTP, respectively. There we establish lower and upper bounds with
and without fairness restrictions, under the different competitiveness models. Finally,
Section 6 is dedicated to describing conclusions, further research, and open problems.
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2. Different Problems and Performance Measures. In this section we present the
different on-line problems that arise depending on whether we consider finite or infinite
input sequences and whether we impose fairness restrictions or not. We also present three
alternative definitions of competitiveness that can be applied to infinite multi-threaded
problems.

2.1. Finite versus Infinite Sequences. In our first problem, called Finite-MTP (FMTP),
algorithms are faced with a certain number offinite sequences of requests that have to
be servedcompletely, that is, algorithms have to arrive at the end of each one of the
sequences. FMTP is given by the set of pagesU and two positive integersk andw, the
size of the cache and the number of sequences, respectively.σ = σ1, σ2, . . . , σw is an
input tuple, where eachσi is a finite sequence of requests (each request is an element of
U ). The tuple formed by thej th request of each sequence is called thej th rowof requests.
At any stage, a sequenceσi whose last request has not been served is calledactive.

At every moment, an algorithm for FMTP holdsk distinct pages in its cache, and
to serve a request to pagep ∈ U , p must be present in the cache. An algorithm for
FMTP receives a tuple of sequencesσ as input and produces as output an interleaving
of the sequences ofσ together with a sequence of configurations of the cache used to
serve each of the requests. We call this output aschedulefor σ . The cost of a schedule
is the sum of the Hamming distances between successive cache configurations of the
schedule. An on-line algorithm must produce the schedule with the restriction that each
configuration must be determined only as a function of the currently seen requests and
all the requests already served by the algorithm. An off-line algorithm can decide each
configuration based on the entire input.

Certain types of systems are formed by a finite number of infinite sequential processes
that run concurrently, each one of them producing its own sequence of requests to memory
pages. We can model these situations by considering infinite sequences of requests, and
we get the infinite version of the problem, Infinite-MTP (IMTP). The task of an algorithm
for this problem is the same as for the finite case, except from the fact that an infinite
schedule must be produced. In this case the cost of a schedule is an infinite sum.

In both cases the goal of an algorithm is to produce a schedule that minimizes the
total cost. In Section 2.3 we discuss how competitive analysis can be used to evaluate
the performance of on-line algorithms for these problems.

2.2. Fairness. In Section 2.1 we did not make any consideration regarding the fairness
of the algorithms for MTP. In other words, algorithms for both variants of the problem
would try to minimize the number of page faults. For example, in the infinite case that
could be achieved even by serving only the requests coming from one particular thread.
In certain frameworks, such as multi-tasking systems, this would not be admissible.
Therefore, it is natural to impose fairness restrictions. We model them by considering,
as part of the input of the problem, a (usually large) integert such that no request can
“wait” more thant units of time from the moment the previous request of the sequence
has been satisfied. Time is measured in the following way: one unit of time elapses each
time the system serves a request. Consequently, we define the notion of at-fair schedule.

An algorithm for the Fair-MTP problem must produce at-fair schedule for the input
tuple of sequences. An on-line algorithm must obviously produce the schedule based
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only on the known part of the input. We can apply this notion to both finite and infinite
inputs, and therefore we get two new problems, namely Fair-FMTP and Fair-IMTP.

Turning back to the definition, note that the problem is well defined whenevert ≥
w − 1. An interesting particular case arises whent = w − 1. This corresponds to
imposing that, after choosing an ordering among the sequences, the input must be served
in a round-robin fashion.

For notational convenience, from now on we refer to the two problems defined in
Section 2.1 as Unfair-FMTP and Unfair-IMTP, while the terms FMTP and IMTP are
used when fairness is not relevant. Analogously, we use the terms Unfair-MTP and Fair-
MTP (without reference to the finiteness of the sequences) when finiteness is irrelevant.

2.3. Performance Measures. For the finite versions of MTP, every algorithm must serve
all the requests that appear in the input tuple. Therefore, the straightforward extension
of the traditional definition of competitiveness naturally applies to this case. We say that
an algorithm A for FMTP isc-competitive if and only if there exists a constantD such
that for any input tupleσ , we haveCA(σ )− c ·COPT(σ ) ≤ D, whereCA(σ ) is the cost
incurred by A, andCOPT(σ ) is the cost incurred by an optimal off-line algorithm.

When we deal with infinite input sequences, things are less immediate: as the cost of
a schedule is an infinite sum, it can be measured at finite moments or in the limit, and
there may be different ways of comparing performances of algorithms. The previous
definition of competitiveness may be naturally adapted to IMTP as follows.

MODEL every-step. An algorithm for IMTP isc-competitive if and only if

(∃D)(∀σ)(∀`)CA(σ, `)− c · COPT(σ, `) ≤ D,

whereCA(σ, `) is the cost incurred by the algorithm for serving a finite number` of
requests, andCOPT(σ, `) is the cost incurred by an optimal off-line algorithm that serves
` requests.

On-line algorithms are not aware of the moment when their performance will be
compared with that of the optimal off-line algorithm. Therefore this definition implies
that an on-line algorithm, to be competitive on infinite sequences, must be competitive at
every finite stage. This contrasts with the intuition that, for infinite inputs, one would like
to evaluate an algorithm’s performance in the long run, and not at particular moments.
This point is addressed by the following definition.

MODEL constant-limit. An algorithm for IMTP isc-competitive if and only if

(∃D)(∀σ) lim sup
`→∞

CA(σ, `)− c · COPT(σ, `) ≤ D.

This second definition seems somehow too strict, as it requires the existence of one
particular constant to bound the difference between the on-line cost andc times the
optimal off-line cost. For costs that tend to infinity (something that may happen in
IMTP) it could suffice that that difference is bounded. That is the intention of the third
(and last) definition of competitiveness we present.
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MODEL variable-limit. An algorithm for IMTP isc-competitive if and only if

(∀σ) lim sup
`→∞

CA(σ, `)− c · COPT(σ, `) <∞.

An immediate consequence of this definition is that for infinite inputs that can be served
with constant cost, any algorithm that eventually does not fault anymore will fit the
definition. This is not true for the other two models.

In a classical paper [14], Raghavan and Snir compared two alternative definitions
of competitiveness for Paging algorithms. The first one measures the performance of
algorithms “in the limit,” i.e., when the number of requests to serve tends to infinity,
while the second one does so for finite sequences. By definition of the Paging problem,
at every finite moment every algorithm has served the same set of requests, and that is
the intuitive reason that makes both approaches essentially equivalent in a deterministic
setting, as is proved in [14]. With multiple threads that reason is not valid anymore.
Nevertheless, we will prove that the three models of competitiveness, that a priori seem
different, are essentially equivalent. Notice that forw = 1 (normal Paging) our every-step
and variable-limit models correspond respectively to the definitions of competitiveness
on finite sequences and competitiveness in the limit, defined in [14]. In addition, for
w = 1 there is no distinction between FMTP and the every-step model of IMTP.

3. Basics on Normal Paging. In this section we present some basic material related
to normal Paging, that we use in the following sections.

3.1. The Paging Algorithm Flush-When-Full. All the algorithms presented in this paper
for the different versions of MTP are based on Flush-When-Full (FWF), a very well
knownk-competitive on-line algorithm for Paging, that was introduced in [11]. However,
it is worthwhile noting that we could have used any deterministic marking algorithm (for
instance, LRU); we have chosen FWF to simplify the analysis.

FWF maintains a set of marked pages. Initially no page is marked. On each request,
an unmarked page is evicted to make room for the requested page if necessary; in any
case the requested page is marked. The behavior of FWF on a request to pagep is shown
in Figure 1. FWF works inphases, the first phase starting with the first request of the
sequence and each new phase starting with the request that would have caused more
thank pages to be marked (when the marks are deleted). It is easy to verify that FWF

Fig. 1.Behavior of algorithm Flush-When-Full on a request to pagep.
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has a cost of at mostk per phase. On the other hand, in any phasek distinct pages are
requested, and the first requested page of the next phase is different from thosek pages;
this implies that any algorithm must have at least one fault per phase.

3.2. Off-Line Service

LEMMA 1. Letσ be a sequence of d−1 requests, chosen from a set of at most d distinct
pages, with d > k. There exists an off-line algorithm that, starting with k of those pages
in the cache, servesσ with at most d− k page faults.

PROOF. The algorithm is Farthest-in-the-Future (FF), also called MIN because it is an
optimal off-line algorithm for Paging [2]. Each time a page fault occurs, FF evicts the
page that appears farthest in the unserved part of the input sequence.

Suppose that every page that FF evicts is never requested again. This means that every
request that produces a fault corresponds to a page that FF never had in the cache before
the moment in which the fault occurs. Since there are at mostd − k pages that initially
FF does not have in the cache, the cost of FF cannot exceedd − k.

On the other hand, consider the last requestr that produces the eviction of a pagep
that is requested later. From the behavior of FF we know thatp is evicted because the
otherk− 1 pages of the cache appear beforep in the unserved part ofσ . Sincer is the
last request that produces the eviction of a page that is requested later, thosek− 1 pages
will be in the cache of FF when requested, and then FF does not fault at leastk−1 times.
Thus in this case the cost of FF is at most|σ | − (k− 1) = d − k.

COROLLARY 2. Letσ be a sequence of requests, chosen from a set of at most d distinct
pages, with |σ | ≥ k and d> k. There exists an off-line algorithm that servesσ with at
most k+ (d − k)d(|σ | − k)/(d − 1)e page faults.

PROOF. Consider an off-line algorithm that starts by loading into the cache the firstk
different pages that appear inσ . With this content in the cache, the algorithm can serve
at least the firstk requests ofσ , with a total cost ofk up to that moment. After that, the
algorithm splits the (at most|σ |−k) remaining requests into sectors ofd−1 consecutive
requests each, and serves each sector using FF. By Lemma 1, the new algorithm has at
mostd − k page faults in each sector, which proves the claim.

4. Finite Multi-Threaded Paging. In this section we consider FMTP, the finite ver-
sion of MTP. In this version of the problem each sequence contains a finite num-
ber of requests, and every algorithm must serve all those requests. We start with
a technique useful for obtaining lower bounds on the competitiveness of on-line
algorithms for both the fair and unfair cases of FMTP. After that, we analyze them
separately.

4.1. How to Prove Lower Bounds. The following lemma is a rephrasing of a technique
that has been used often in the literature of single-threaded on-line problems.
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LEMMA 3. Let A be any on-line algorithm for FMTP. If there exist a constant E and
an infinite familyF of input tuplesσ such that

1. for all σ ∈ F we have CA(σ ) ≥ cCOPT(σ )+ E, and
2. the value of CA(σ ) is not upper bounded inF ,

then A is not better than c-competitive.

PROOF. The proof follows by contradiction. Suppose that the conditions hold and that
A is (c− ε)-competitive for someε > 0. Then there exists a constantD such that, for
all σ ∈ F,

D ≥ CA(σ )− (c− ε)COPT(σ ) ≥ cCOPT(σ )+ E − (c− ε)COPT(σ ) = E + εCOPT(σ ),

that is,COPT(σ ) is upper bounded inF . However, by hypothesisCA(σ ) is unbounded in
F , so A cannot be competitive, a contradiction.

4.2. The Unfair Finite Problem. Although in FMTP every algorithm must serve the
same set of requests, the order in which those requests are served is decided by each
algorithm. We use this property to obtain a lower bound for Unfair-FMTP. The lower
bound does not match the upper bound we present later; however, if we restrict to normal
Paging (w = 1) it is the best possible (k). As is usually done in competitive analysis,
we compare on-line strategies with anadversarythat chooses the input and serves it
optimally.

THEOREM4. No on-line algorithm for Unfair-FMTP is better than(k + 1− 1/w)-
competitive.

PROOF. We use Lemma 3 to prove the lower bound. Let A be any on-line algorithm.
Let m = nk, wheren is any positive integer. Consider a setU of w(k + 1) pages,
partitioned intow disjoint subsetsU1,U2, . . . ,Uw, each one ofk + 1 pages. Sincek
is the size of the cache, in any configuration of A there is at least one page of eachUi

missing from A. The first request of each sequenceσi is to a page ofUi that is not present
in the initial configuration of A. Each new request ofσi is to a page ofUi not in A’s
cache after the algorithm serves the previous request of the same sequence. Letσj be the
last sequence of which A serves themth request. The other sequences have exactlym
requests, whileσj continues with the concatenation in any order of the other sequences,
e.g.,σ1, σ2, . . . , σj−1, σj+1, . . . , σw (see Figure 2). By construction A faults on each one
of the firstm requests of each sequence, with a cost of at leastwm. When A serves
themth request ofσj , it must still serve the remaining requests of that sequence. This
cannot require less than the cost incurred by an optimal off-line algorithm that serves
those requests starting with the same cache as A. If we denote asR that optimal cost,
we have

CA(σ ) ≥ wm+ R.

LetCi
OPT be the optimal off-line cost for serving the firstm requests ofσi . By Corollary 2

we know that (∀i ) Ci
OPT≤ s= k+ n− 1, and then the optimal off-line cost for serving
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Fig. 2.Sequences used in the proof of Theorem 4.

all the requests is

COPT(σ ) ≤
w∑

i=1

Ci
OPT≤ ws,

because the adversary can serveσj and at the same time serve the corresponding requests
of the other sequences (with no additional cost for those last sequences). It is also true
that

COPT(σ ) ≤ C j
OPT+ k+ R≤ s+ k+ R,

because the adversary can serve the firstm requests ofσj , and then serve the remainder
of that sequence starting with the same cache as A. Sincewm= wks−wk(k−1), using
standard calculations we obtain

CA(σ ) ≥ wm+ R≥ wm+ COPT(σ )− s− k

= (k− 1/w)ws+ COPT(σ )− wk(k− 1)− k

≥ (k− 1/w)COPT(σ )+ COPT(σ )− wk(k− 1)− k

= (k+ 1− 1/w)COPT(σ )− wk(k− 1)− k.

This and the fact thatCA(σ ) is unbounded for the family of instances, imply the result
by Lemma 3.

We now present an on-line algorithm for Unfair-MTP. We call the algorithm
Alternating–Flush-When-Full (AFWF), and it is described in Figure 3. The algorithm
works in rounds; each round consists of applying a phase of FWF to each sequence
σ1, σ2, . . . , σw. In Unfair-FMTP the algorithm must check whether the sequences are
over. We will see now that AFWF iswk-competitive for that problem.

THEOREM5. Algorithm AFWF iswk-competitive for Unfair-FMTP.
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Fig. 3.Algorithm Alternating–Flush-When-Full.

PROOF. By definition of AFWF, the cost of each one of the phases of a round is at most
k, and thus the cost of each round is at mostwk. Suppose that for serving all the requests
AFWF stopped in the(m+ 1)st round, eventually with the last round incomplete. Then
its total cost is

CAFWF(σ ) ≤ wkm+ wk.

Let σj be a sequence that finished when AFWF was in its last round. Restricted to
σj , in any roundk distinct pages are requested, and the first requested page of the next
round is different from thosek pages. Hence the adversary must have at least one fault
per completed round, and then we have

COPT(σ ) ≥ m,

which implies

CAFWF(σ ) ≤ wkCOPT(σ )+ wk.

Let A be any on-line algorithm for Paging. If we use A to serve completely each one
of thew sequences of requests, we obtain an on-line algorithm for Unfair-FMTP. It is not
difficult to show that if A isc-competitive, then the resulting algorithm for Unfair-FMTP
is wc-competitive. This means that anyk-competitive Paging algorithm defines awk-
competitive algorithm for Unfair-FMTP. However, we prefer AFWF because algorithms
of the type just described can behave very “unfairly”; in addition, AFWF can be used in
the infinite problem.

Recently, Feuerstein et al. [6] have obtained a strongerÄ(k logw) lower bound for
Unfair-FMTP. For completeness we present the result, without a proof.

THEOREM6. Let c< (0.5blogwc + 1)k/e. Let D be any constant. For every on-line
algorithm A for Unfair-FMTP there exists an input tupleσ such that

1. |σ | − cCOPT(σ ) > D, and
2. for every` ≤ |σ | the cost of A for serving̀ requests fromσ is at least` (in other

words, σ is the nemesis for A).

COROLLARY 7. No on-line algorithm for Unfair-FMTP is better than[(0.5blogwc +
1)k/e]-competitive.
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4.3. The Fair Finite Problem. We now analyze FMTP in the case in which fairness
restrictions are explicitly imposed. Recall that fairness is modeled by considering an
integert such that at mostt other requests can be satisfied since the moment any request
is seen till the moment that request is served. The minimum possible value fort isw−1.

A straightforward lower bound for the competitiveness of on-line algorithms for Fair-
FMTP can be obtained by considering an instance formed byw identical sequences,
each one like the sequence used in the proof of the lower bound for normal Paging [16].
The following theorem formalizes this argument.

THEOREM8. No on-line algorithm for Fair-FMTP is better than k-competitive, even if
we restrict the sequences of requests to be formed by at most k+ 1 distinct pages.

PROOF. Let A be any on-line algorithm. LetU be a set ofk + 1 distinct pages. We
construct the input tuple by rows, all the requests in each row to the same page. The
requests of the first row are to a page ofU not in A’s cache at the beginning, and the
requests of each new row are to a page ofU not in A’s cache after the algorithm serves the
first request of the previous row. This guarantees that A faults at least once per row. The
adversary chooses any fixed order for the sequences, and cyclically serves one request
of each sequence. This behavior is fair for anyt ≥ w − 1, and allows the adversary to
fault only once everyk rows.

Without fairness restrictions, a smart on-line algorithm for FMTP could delay serving
sequences that look “too hard.” When fair behavior is imposed, an on-line algorithm can
be forced to serve with high cost requests that could be served more efficiently by
delaying them. The following theorem exploits this fact to prove that in general there is
no competitive on-line algorithm for Fair-FMTP.

THEOREM9. There is no competitive on-line algorithm for Fair-FMTP with t≥ w ≥ 2,
even if we restrict the sequences of requests to be formed by at most k+ 1 distinct
pages.

PROOF. Let A be any on-line algorithm. Given any pair of constantsc andD, we will
show an input tupleσ for which CA(σ ) − cCOPT(σ ) > D. This will prove the claim.
Let n be a “big” positive integer that we fix later. LetU = {a,b1,b2, . . . ,bk} be a set
of k + 1 distinct pages. LetU ′ = U − {a} = {b1,b2, . . . ,bk}. The firstn requests of
every sequence are to pagea. Letσp andσq be two sequences such that A serves thenth
request ofσp before the algorithm serves thenth request ofσq (remember thatw ≥ 2).

We choose the following requests so as to makeσ very expensive ifσp is served
together with the initial part ofσq, but cheap if several requests ofσq are served first.
The algorithm A will act the first way to satisfy the fairness constraint, and so it will
have a high cost. The off-line adversary will delay the requests ofσp until it has served
the initial requests ofσq, bounding its cost by a constant.

After thenth request ofσp, the sequence continues with requests to pagesb1,b2, . . . ,

bk repeatedly. On the other hand,σq continues withn more requests to pagea. The
requests not mentioned above are to arbitrary pages inU ′ (see Figure 4).
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Fig. 4.Sequences used in the proof of Theorem 9.

Notice that, in every group oft+1 consecutive requests that any fair algorithm serves,
it must satisfy at least one request and at mostt+1−(w−1)×1= t−w+2 requests of
each sequence (assuming that all thew sequences are active). In every group of(t +1)k
consecutive requests, the number of served requests of each sequence is betweenk and
(t−w+2)k. When A serves thenth request ofσq, there aren pending requests to pagea
in that sequence, whileσp repeats requests to pagesb1,b2, . . . ,bk. Before A terminates
with all the requests to pagea in σq, in every group of(t + 1)k consecutive requests
the algorithm must satisfy at leastk requests to pagea in σq, and at least one request to
each pageb1,b2, . . . ,bk in σp. These arek + 1 distinct pages, and hence the cost of A
for serving each group of(t + 1)k consecutive requests is at least 1. If the sequences are
long enough, this occurs a minimum ofb n

(t−w+2)kc times until A serves all the requests
to pagea in σq. Therefore the total cost of A for sufficiently large sequences is

CA(σ ) ≥
⌊

n

(t − w + 2)k

⌋
.

We now consider the adversary’s cost. Being thatt ≥ w, for eachw+ 1 requests the
adversary can serve one request ofσq and one request of each one of thew sequences
(includingσq). This behavior ensures that in the first(w+1)n steps the adversary serves
the 2n requests to pagea in σq, and then requests to that page in the other sequences.
The cost for doing that is at most 1. All the other requests are to pages inU ′. The size of
the cache isk and there arek pages inU ′. Then the adversary can serve the remaining
requests with a cost of at mostk, and therefore we have

COPT(σ ) ≤ 1+ k.

To conclude the proof we only need to fix the value ofn. Definen(x, y) = (t −w+
2)kdx + xk+ ye, and choose anyn ≥ n(c, D + 1). Then we have

CA(σ )− cCOPT(σ ) ≥
⌊

n

(t − w + 2)k

⌋
− c(1+ k)

≥ dc+ ck+ D + 1e − c(1+ k) ≥ D + 1> D,

and the result follows.
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Extremely tight fairness restrictions. The preceding theorem does not cover the cases
of Fair-FMTP in whichw = 1 or t = w − 1. With w = 1 fairness restrictions have
no sense, and we are faced with regular Paging. On the other hand, the caset = w − 1
requires further analysis. It is worthwhile distinguishing two different situations of Fair-
FMTP with t = w − 1. The first one is while all the sequences are active, and the other
one is when one or more sequences have finished.

While all the sequences are active the algorithms (on-line or not) must apply a round-
robin strategy, i.e., serve one request of each sequence in a fixed order which is repeated
over and over again. This implies that after eachw new requests, the set of requests
served by any algorithm is the same. This particular situation of Fair-FMTP is closely
related to normal Paging, since after an algorithm has chosen the order in which to
serve the requests, we can think that there is only one sequence to be served, as is
the case in Paging. Nevertheless, the following points show that the two problems are
different:

• In Fair-FMTP we can say that any algorithm has served the same set of requests only
after eachw new requests (after each row of requests), not at every step as in Paging.
• Algorithms (of any type) can choose betweenw! distinct orders of the sequences.

However, off-line algorithms can choose with information on the whole input tu-
ple, while on-line algorithms must base their decisions only on the first requests of
each sequence. Moreover, any choice made by an on-line algorithm can be fooled
if the first two requests of all the sequences are to the same page. In other words,
from a competitive analysis point of view, off-line algorithms can really decide in
which order to serve the sequences, while the choice of an on-line algorithm is an
illusion.
• On-line algorithms can see the followingw requests to serve, not only one of them.

More precisely, on-line algorithms can make use of a lookahead of sizew. This is not
a clear advantage for on-line algorithms, since this kind of lookahead can be easily
neutralized by replacing each request withw requests to the same page.

As soon as a sequence finishes in Fair-FMTP witht = w − 1, distinct algorithms
can serve the remaining requests in very different ways. This can be used to extend
Theorem 9 to the caset = w − 1 andw ≥ 3. The idea of the proof consists of making
the on-line algorithm serve a first sequence of length 1.

COROLLARY 10. There is no competitive on-line algorithm for Fair-FMTP with t=
w − 1 andw ≥ 3 (t = w − 1 ≥ 2), even if we restrict the sequences of requests to be
formed by at most k+ 1 distinct pages.

PROOF. Let A be any on-line algorithm. LetU = {a,b1,b2, . . . ,bk} be a set ofk + 1
distinct pages. The first request of every sequence is to pagea. Sincet = w − 1, any
algorithm must start by completely serving the first row of requests. The first sequence
that A serves terminates immediately. Thus, at the end of the first row of requests, the
number of active sequences isw′ = w − 1, with t = w′ ≥ 2. From that point on, we
repeat the construction of Theorem 9. Reasoning as in that theorem we obtain that the
total cost of A is at leastb n

(t−w′+2)kc.
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Fig. 5.Algorithm Round-Robin–Flush-When-Full.

The adversary can serve the first row of requests in the order that A does. After that,
for eachw′ + 1 requests the adversary can serve one request ofσq and one request of
each one of thew′ active sequences (includingσq). With this behavior the adversary
honors the fairness constraint, and has a total cost of at most 1+ k.

The proof concludes as in Theorem 9, by choosingn as large as needed.

We have seen in Theorem 9 and Corollary 10 that the only case of Fair-FMTP in
which competitive on-line algorithms can exist is whent = w − 1 andw = 2. For this
case the lower bound of Theorem 8 holds; a competitive on-line algorithm is presented
now.

A possible on-line algorithm for Fair-MTP is Round-Robin–Flush-When-Full
(RRFWF), which is described in Figure 5. The algorithm works in “super-phases”;
each super-phase consists of applying a phase of FWF to the sequence formed by taking
in turn one request of each sequenceσ1, σ2, . . . , σw, and then serving the next request
and all the other pending requests in the same row; these additional requests are served by
RRFWF in an arbitrary deterministic way. In the finite problem the algorithm must check
for end-of-sequence. Note that due to the additional requests served in each super-phase,
whenw = 1 RRFWFis not equivalent to FWF. Clearly, RRFWF is fair for any legal
value oft . We show now that it is(k + w)-competitive for Fair-FMTP witht = w − 1
andw = 2.

THEOREM11. Algorithm RRFWF is(k+w)-competitive for Fair-FMTP with t= w−1
andw = 2.

PROOF. By definition of RRFWF, the cost of each super-phase does not exceedk +
1+ (w − 1) = k+ w. Suppose that for serving all the requests RRFWF stopped in the
(m+ 1)st super-phase, eventually with the last super-phase incomplete. Hence we have
for its total cost

CRRFWF(σ ) ≤ (k+ w)m+ k+ w.
Note that any algorithm must serve the requests row by row: while all the sequences

are active, this is true due to the fact thatt = w−1; when one of the (two) sequences has
finished, this trivially holds. Therefore, at the end of each one of the completed super-
phases the adversary must have served the same requests as RRFWF, because RRFWF
only terminates a super-phase when it has completely served some row. Since in each



50 E. Feuerstein and A. Strejilevich de Loma

super-phase at leastk+ 1 distinct pages appear, the adversary must fault at least once in
each completed super-phase, and then we have

COPT(σ ) ≥ m,

so

CRRFWF(σ ) ≤ (k+ w)COPT(σ )+ k+ w.

We must point out that no general on-line algorithm for Fair-FMTP beats RRFWF:
in [17] it was proved that no on-line algorithm for Fair-FMTP witht = w − 1, evenw,
andk = 1 is better than(k+ w)-competitive.

5. Infinite Multi-Threaded Paging. In this section we analyze IMTP, that is, MTP
with infinite input sequences. As we did in Section 4, we first present some general
results about the problem. After that we consider separately the fair and unfair cases.
For each one of these cases we analyze IMTP under the three competitiveness models
introduced in Section 2.

Some of the results included in this section establish distinct equivalencies between
the competitiveness models. We mainly use two types of arguments to establish those
results. The first one is areplacementargument: given an on-line algorithm and an
input tuple in which the algorithm behaves poorly, we replace some of the unserved
requests of the input tuple with “cheap” requests; the on-line algorithm still has a bad
performance in the modified input tuple, even when the number of requests to serve tends
to infinity. The second type is aconcatenationargument: given an on-line algorithm,
we concatenate parts of input tuples (in which the algorithm behaves poorly) to form
another input tuple; this last input tuple is finally presented to the on-line algorithm. A
concatenation argument was used in [14] to show that the competitiveness achievable
by deterministic on-line algorithms for Paging is the same on finite sequences and in the
limit. Nevertheless, the argument does not translate directly to MTP, since at each step
different algorithms may have served different sets of requests.

5.1. General Results. It is easy to see that our three performance measures are mono-
tonically weaker. We use this fact repeatedly within this section.

THEOREM12. Let A be any algorithm for IMTP. If A is c-competitive under the every-
step model, then it is c-competitive under the constant-limit model.

PROOF. The proof follows directly from the definitions of the two models.

THEOREM13. Let A be any algorithm for IMTP. If A is c-competitive under the
constant-limit model, then it is c-competitive under the variable-limit model.

PROOF. The proof follows directly from the definitions of the two models.
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We now present tools that allow us to obtain lower bounds on the competitiveness of
on-line algorithms for IMTP.

LEMMA 14. Let A be any on-line algorithm for IMTP. If there exist a constant E and
an infinite familyF of pairs(σ, `) such that

1. for all (σ, `) ∈ F we have CA(σ, `) ≥ cCOPT(σ, `)+ E, and
2. the value of CA(σ, `) is not upper bounded inF ,

then A is not better than c-competitive under the every-step model.

PROOF. Replace syntactically(σ ) by (σ, `) in the proof of Lemma 3.

LEMMA 15. Let A be any on-line algorithm for IMTP. If there exist a constant E and
an infinite familyF of pairs(σ, `) such that

1. for all (σ, `) ∈ F and for all`′ ≥ ` we have CA(σ, `′) ≥ cCOPT(σ, `
′)+ E, and

2. the value of CA(σ, `) is not upper bounded inF ,

then A is not better than c-competitive under the constant-limit model.

PROOF. As in Lemmas 3 and 14, the proof follows by contradiction. Consider a constant
ε > 0. By hypothesis we know that for all(σ, `) ∈ F and for all`′ ≥ `,

CA(σ, `
′)− (c− ε)COPT(σ, `

′) ≥ cCOPT(σ, `
′)+ E − (c− ε)COPT(σ, `

′)
= E + εCOPT(σ, `

′).

Now assume that A is(c− ε)-competitive. Then there exists a constantD such that

D ≥ lim sup
`′→∞

CA(σ, `
′)− (c− ε)COPT(σ, `

′) ≥ E + ε lim sup
`′→∞

COPT(σ, `
′).

Since the cost is a non-decreasing function of the number of served requests, the above
expression implies thatCOPT(σ, `) is upper bounded inF , preventing A from being
competitive becauseCA(σ, `) is unbounded inF .

5.2. The Unfair Infinite Problem. At each step of IMTP each algorithm may have
served different requests. Based on this fact we now prove a lower bound for Unfair-
IMTP under the every-step model.

THEOREM16. No on-line algorithm for Unfair-IMTP is better thanwk-competitive
under the every-step model.

PROOF. We use Lemma 14 to prove the claim. Let A be any on-line algorithm. Let
m = nk, wheren is any positive integer, and consider a setU of pages, partitioned
into w disjoint subsetsU1,U2, . . . ,Uw, each one ofk + 1 pages. The input tuple is
constructed as in Theorem 4 until A serves` = wm requests. In this way A necessarily
faults on each one of these requests, and its cost is

CA(σ, `) ≥ wm= wnk.
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Fig. 6.Sequences used in the proof of Theorem 16.

Let σj be the last sequence of which A serves themth request, or a sequence such that A
does not serve itsmth request at all. Now supposeσj continues with repeated requests
to pagep which is themth request ofσj (see Figure 6). By Corollary 2 the sequence
σj can be served with at mostk+ n− 1 page faults, with no cost after themth request.
Since the adversary can just serve requests ofσj forever, the optimal off-line cost is

COPT(σ, `) ≤ k+ n− 1.

Then we have

CA(σ, `) ≥ wnk = wk(k+ n− 1)− wk(k− 1) ≥ wkCOPT(σ, `)− wk(k− 1).

We will see now that algorithm AFWF, proposed for Unfair-FMTP and described in
Figure 3, is strongly competitive for Unfair-IMTP under the every-step model.

THEOREM17. Algorithm AFWF iswk-competitive for Unfair-IMTP under the every-
step model.

PROOF. The proof is very similar to that of Theorem 5. Suppose that after` requests
AFWF completedm rounds and is currently in the(m+ 1)st round. Then its cost is

CAFWF(σ, `) ≤ wkm+ wk.

There must be at least one sequence for which the adversary served at least as many
requests as AFWF in that sequence. Letσj be such a sequence. Restricted toσj , in any
roundk distinct pages are requested, and the first requested page of the next round is
different from thosek pages. This means that we can charge to the adversary at least a
cost of 1 for every completed round, and hence we have

COPT(σ, `) ≥ m,

which implies

CAFWF(σ, `) ≤ wkCOPT(σ, `)+ wk.

We have presented in Theorems 16 and 17 lower and upper bounds for Unfair-IMTP
under the every-step model. We now extend those results to the constant-limit model.
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THEOREM18. Let A be any on-line algorithm for Unfair-IMTP. Then the following
statements are equivalent:

(I) A is c-competitive under the every-step model;
(II) A is c-competitive under the constant-limit model.

PROOF. We proved in Theorem 12 that (I)⇒ (II). To prove that (II)⇒ (I), we will see
that¬(I) ⇒ ¬(II). Let D be any constant. Since¬(I) holds, there existσ and` such that

CA(σ, `)− cCOPT(σ, `) > D + 1+ c.

After serving` requests, there must be at least one sequenceσj for which the adversary
has served at least the same number of requests as A in that sequence. The part ofσj

that none of the algorithms has served may contain requests only to some particular
page. The adversary can serve any number of those requests with at most one new page
fault. On the other hand, the cost of A for serving additional requests cannot decrease.
Therefore, for any number of requests`′ ≥ ` we have

CA(σ, `
′) ≥ CA(σ, `)

and

COPT(σ, `
′) ≤ COPT(σ, `)+ 1,

which implies

CA(σ, `
′)− cCOPT(σ, `

′) ≥ CA(σ, `)− cCOPT(σ, `)− c > (D + 1+ c)− c = D + 1,

and then

lim sup
`′→∞

CA(σ, `
′)− cCOPT(σ, `

′) ≥ D + 1> D.

So far we have shown that our on-line algorithm AFWF iswk-competitive for Unfair-
IMTP under the every-step and constant-limit models, and we have provided a matching
lower bound. Therefore Unfair-IMTP is closed under those two models. By Theorem 13
we know that AFWF iswk-competitive also under the variable-limit model. We were
not able to prove whether AFWF is optimal (strongly competitive) under this last model.
However, we will obtain from the finite version of the problem a lower bound for Unfair-
IMTP under the variable-limit model.

LEMMA 19. Given a constant c, if for every on-line algorithm A for Unfair-FMTP there
exists a finite input tupleσ such that

1. |σ | − cCOPT(σ ) ≥ 1, and
2. for every` ≤ |σ | the cost of A for serving̀ requests fromσ is at least̀ ,

then no on-line algorithm for Unfair-IMTP is c-competitive under the variable-limit
model.
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PROOF. Let IA be any on-line algorithm for Unfair-IMTP, and IADV an off-line adver-
sary. Let ADV be an off-line adversary for Unfair-FMTP that is able to build an input
tuple that fulfills the two conditions mentioned above. Letm be any positive integer.
Roughly speaking we concatenate finite input tuplesσ , so as to obtain an infinite input
tupleσIA such thatCIA (σIA , `)− cCOPT(σIA , `) is not upper bounded.

The adversary IADV simulates ADV to decide the initial requests of each sequence of
σIA . The first time that, following the construction of ADV, a sequence should terminate,
IADV starts simulating a new instance of ADV to extend that sequence. This second
ADV is also used to extend the other sequences when, according to the first ADV, they
should terminate. In general, the first time that, following the construction of thei th
ADV, a sequence should terminate, IADV starts simulating an(i + 1)st ADV to extend
the sequences. Each new ADV works over a completely new set of pages. Letσ(i ) be
the (finite) part ofσIA generated while simulating thei th ADV. By hypothesis, we can
charge unitary cost to IA for each request it serves. Hence its cost forsm =

∑m
i=1 |σ(i )|

requests is

CIA (σIA , sm) ≥ sm =
m∑

i=1

|σ(i )|.

The adversary IADV can optimally serve the requests ofσ(1), then the requests ofσ(2),
and so on. Thus, it is clear that

COPT(σIA , sm) ≤
m∑

i=1

COPT(σ (i )).

Then we have

CIA (σIA , sm)− cCOPT(σIA , sm) ≥
m∑

i=1

[|σ(i )| − cCOPT(σ (i ))] ≥
m∑

i=1

1= m.

Sincem was any positive integer, the result follows.

COROLLARY 20. No on-line algorithm for Unfair-IMTP is better than[(0.5blogwc +
1)k/e]-competitive under the variable-limit model.

PROOF. The claim follows from Theorem 6 and Lemma 19.

5.3. The Fair Infinite Problem. Theorem 9 states that in general there is no competitive
on-line algorithm for Fair-FMTP. If we consider infinite input sequences in the proof
of that theorem, it is straightforward to extend the result to Fair-IMTP under the every-
step and constant-limit models. In fact, the result is valid under the three performance
measures used for IMTP, as the following theorem shows.

THEOREM21. There is no competitive on-line algorithm for Fair-IMTP with t≥ w ≥
2, under the every-step, constant-limit, and variable-limit models, even if we restrict the
sequences of requests to be formed by at most k+ 1 distinct pages.
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PROOF. By Theorems 12 and 13, it is enough to prove the claim for the variable-limit
model. Let A be any on-line algorithm. Given any constantc, we will show an input
tupleσ for which CA(σ, `) − cCOPT(σ, `) is not upper bounded, proving the theorem.
In order to build the input tuple we repeatedly apply the construction of Theorem 9. Let
n ≥ n(c,1) = (t −w + 2)kdc+ ck+ 1e. Let U = {a,b1,b2, . . . ,bk} be a set ofk+ 1
distinct pages. LetU ′ = U − {a}. The firstn requests of all the sequences are to page
a. Let σp1 andσq1 be two sequences such that A serves thenth request ofσp1 before
the algorithm serves thenth request ofσq1. The sequenceσp1 continues with requests
to pagesb1,b2, . . . ,bk repeatedly, whileσq1 continues withn more requests to pagea.
Assume that the requests not mentioned above are to arbitrary pages inU ′. Reasoning
as in Theorem 9, it is not difficult to show the following facts: since the moment that A
serves thenth request ofσq1 until the moment that A satisfies all the requests to pagea in
that sequence, the algorithm has a cost of at least 1 in every group of(t+1)k consecutive
requests that it serves; moreover, this occurs a minimum ofb n

(t−w+2)kc times; on the other
hand, the adversary can serve the complete input tuple with a cost of at most 1+ k. Let
`1 be the number of served requests when A satisfies the last request to pagea in σq1.
Based on the above-mentioned facts, we have

CA(σ, `1)−cCOPT(σ, `1) ≥
⌊

n

(t − w + 2)k

⌋
−c(1+k) ≥ dc+ck+1e−c(1+k) ≥ 1.

Now imagine (only for the purposes of the analysis) that A temporarily stops serving
requests while the adversary continues until it has served more requests than A in all the
sequences. The adversary can change the requests that it has not served, because A has
not seen them. The modified part starts withn requests to pagea in all the sequences.
Now suppose that A continues serving requests, and letσp2 andσq2 be two sequences
such that A serves thenth request of the modified part ofσp2 before the algorithm serves
the nth request of the modified part ofσq2. The sequenceσp2 continues with requests
to pagesb1,b2, . . . ,bk repeatedly, whileσq2 continues withn more requests to pagea.
Again the remaining requests are to arbitrary pages inU ′. Let `2 be the total number
of requests served by A when it satisfies all the requests to pagea. Reasoning as in
Theorem 9 for the modified part of the input tuple, we obtain

CA(σ, `2) ≥ CA(σ, `1)+
⌊

n

(t − w + 2)k

⌋
and

COPT(σ, `2) ≤ COPT(σ, `1)+ 1+ k,

and then

CA(σ, `2)− cCOPT(σ, `2) ≥ 2.

The adversary can change the requests that A has not seen as many times as desired.
This implies that for any positive integerm there is a number of requests`m such that

CA(σ, `m)− cCOPT(σ, `m) ≥ m,

which proves the theorem.
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It is worthwhile noting that in [8] it was proved that under the every-step model,
the above result is valid even if the adversary has a cache of size 1. The proof uses an
adversary that does not serve the requests that are expensive for the on-line algorithm.
That very strong result does not seem to be achievable under the other two models.

Extremely tight fairness restrictions. Note that Theorem 21 excludes an interesting
case, that is, the caset = w − 1. In this case the situation is the same as in the finite
version while all the sequences are active, so the discussion in Section 4.3 is valid here. As
a consequence we have results analogous to those obtained for the finite problem. Under
the every-step model a lower bound ofk is straightforward, and our on-line algorithm
RRFWF (Figure 5) is(k+ w)-competitive.

THEOREM22. No on-line algorithm for Fair-IMTP is better than k-competitive under
the every-step model, even if we restrict the sequences of requests to be formed by at
most k+ 1 distinct pages.

PROOF. The proof is almost the same as Theorem 8, although with infinite
sequences.

THEOREM23. Algorithm RRFWF is(k+w)-competitive for Fair-IMTP with t= w−1
under the every-step model.

PROOF. Suppose that after̀requests RRFWF is in the(m+1)st super-phase. Then its
cost is

CRRFWF(σ, `) ≤ (k+ w)m+ k+ w.
As in Theorem 11, at the end of each super-phase that RRFWF has completed the
adversary must have served the same requests as RRFWF. Since in each super-phase at
leastk+1 distinct pages appear, the adversary must fault at least once in each completed
super-phase, and then we have

COPT(σ, `) ≥ m,

so

CRRFWF(σ, `) ≤ (k+ w)COPT(σ, `)+ k+ w.

We now extend the lower and upper bounds of the previous two theorems to cover
Fair-IMTP with t = w − 1 under the three competitiveness models. We will prove the
equivalence of the three models using the fact that in Fair-IMTP witht = w − 1, after
eachw requests any algorithm must have served the same set of requests.

THEOREM24. Consider the problem IMTP, and suppose that the algorithms are re-
stricted to serving the requests row by row(as, for example, in Fair-IMTP with t = w−1).
Then the following statements are equivalent:

(I) there exists a c-competitive on-line algorithm under the every-step model;
(II) there exists a c-competitive on-line algorithm under the constant-limit model;

(III) there exists a c-competitive on-line algorithm under the variable-limit model.
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PROOF. We saw in Theorems 12 and 13 that (I)⇒ (II) and that (II)⇒ (III), respectively.
To finish the proof we will see that¬(I) ⇒ ¬(III). Let A be any on-line algorithm for the
problem. We will show an input tupleσ such thatCA(σ, `) − cCOPT(σ, `) is not upper
bounded. LetD = 1+ c(2w − 1). Since¬(I) holds, there existσ and`1 such that

CA(σ, `1)− cCOPT(σ, `1) > D.

After `1 requests, A has not seen the requests that are after the row numberr1 =
d`1/we + 1. To terminate that row the algorithms must serve at most 2w − 1 new
requests, and at the end of the row the costs will be

CA(σ,wr1) ≥ CA(σ, `1)

and

COPT(σ,wr1) ≤ COPT(σ, `1)+ 2w − 1.

Therefore we have

CA(σ,wr1)− cCOPT(σ,wr1) ≥ CA(σ, `1)− cCOPT(σ, `1)− c(2w − 1)

> D − c(2w − 1) = 1.

From that point on, the adversary can cyclically start a new construction as in the be-
ginning. In general, for any positive integerm there exist a number of requests`m and a
row numberrm = d`m/we + 1 such that

CA(σ,wrm) − cCOPT(σ,wrm) > m.

In [17] it was proved that no on-line algorithm for Fair-IMTP witht = w − 1, even
w, andk = 1 is better than(k + w)-competitive under the every-step model. Hence,
by Theorem 24 it follows that no general on-line algorithm for Fair-IMTP outperforms
RRFWF, under none of the three competitiveness models.

If we exclude the variable-limit model in Theorem 24, we are able to prove a stronger
result.

THEOREM25. Let A be any on-line algorithm for IMTP,and suppose that the algorithms
are restricted to serving the requests row by row(as, for example, in Fair-IMTP with
t = w − 1). Then the following statements are equivalent:

(I) A is c-competitive under the every-step model;
(II) A is c-competitive under the constant-limit model.

PROOF. From Theorem 12 we know that (I)⇒ (II), and then we only need to prove
that¬(I) ⇒ ¬(II). Let D be any constant. Since¬(I) holds, there existσ and` such that

CA(σ, `)− cCOPT(σ, `) > D + 1+ 2wc.

After ` requests, A has not seen the requests that are after the row numberr = d`/we+1.
The adversary has at most 2w− 1 page faults to serve that row completely. After that, if
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the same page is requested over and over again the adversary has at most one new page
fault. Thus, the optimal off-line cost for any number of requests`′ ≥ wr is

COPT(σ, `
′) ≤ COPT(σ, `)+ 2w.

The cost of A cannot decrease when the number of served requests grows, and then we
have

CA(σ, `
′)− cCOPT(σ, `

′) ≥ CA(σ, `)− cCOPT(σ, `)− 2wc

> (D + 1+ 2wc)− 2wc = D + 1,

and so

lim sup
`′→∞

CA(σ, `
′) − cCOPT(σ, `

′) ≥ D + 1> D.

6. Conclusions, Further Research, and Open Problems.In the same way that Pag-
ing has been a paradigmatic problem for traditional competitive analysis, the different
variants of MTP that we discussed in this paper can serve as a first step toward establish-
ing a general framework for multi-threaded on-line problems. New issues characteristic
of this family of problems (mainly fairness and infinite inputs) have been deeply studied,
deriving conclusions that may be generalized and extended to other problems. Our main
goal is now to extend all our definitions to the multi-threaded versions of, for example,
Metrical Task Systems; we already have some results in that direction [7].

Table 1 summarizes the competitiveness results presented in this paper. A conclu-
sion that arises clearly from our work is that when fair behavior is imposed, things are
much harder for on-line algorithms, to the extent that there are no competitive on-line
algorithms in general. An interesting research direction is that of modeling fairness re-
strictions in a different way. One possibility is to strengthen the definition by considering
(instead oft) an integerδ with the following meaning: the difference between the number

Table 1.Summary of our results.

Unfair-FMTP Unfair-IMTP

Lower bound Upper bound Lower bound Upper bound

Any w k+ 1− 1/w a wk
wk b

(0.5blogwc + 1)k/e c wk

Fair-FMTP Fair-IMTP

Lower bound Upper bound Lower bound Upper bound

t ≥ w ≥ 2 ∞ — ∞ —
t = w − 1 andw ≥ 3 ∞ — k k+ w
t = w − 1 andw = 2 k k+ w k k+ w
a A better lower bound of(0.5blogwc + 1)k/e is given in [6].
b Under the every-step and constant-limit models.
c Under the variable-limit model.
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of served requests of any pair of sequences can never exceedδ. This or other models
might allow the existence of general competitive on-line algorithms for the fair case.

On the other hand, the difference between finite and infinite inputs is not so significant
from a competitive analysis point of view. The deep analysis we have done, considering
three performance measures for the infinite case, shows only subtle differences among
them (most of which can be observed in Table 1). Some of the differences could even
disappear if, for example, a better lower bound is found for Unfair-FMTP.

As can be seen in Table 1, the lower and upper bounds do not coincide in every case,
so one goal is to close the existing gaps. Finally, it would be interesting to extend the
work done by Seiden in [15] on randomized algorithms for FMTP and IMTP under the
every-step model to the other models, so as to analyze the relations existing among the
competitiveness models for MTP in a randomized setting.
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of Theorem 9.
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