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Algorithms for the On-Line Travelling Salesman1

G. Ausiello,2 E. Feuerstein,3 S. Leonardi,2 L. Stougie,4 and M. Talamo2

Abstract. In this paper the problem of efficiently serving a sequence of requests presented in an on-line
fashion located at points of a metric space is considered. We call this problem the On-Line Travelling Salesman
Problem (OLTSP). It has a variety of relevant applications in logistics and robotics.

We consider two versions of the problem. In the first one the server is not required to return to the
departure point after all presented requests have been served. For this problem we derive a lower bound on the
competitive ratio of 2 on the real line. Besides, a 2.5-competitive algorithm for a wide class of metric spaces,
and a 7/3-competitive algorithm for the real line are provided.

For the other version of the problem, in which returning to the departure point is required, we present an
optimal 2-competitive algorithm for the above-mentioned general class of metric spaces. If in this case the
metric space is the real line we present a 1.75-competitive algorithm that compares with a≈1.64 lower bound.
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1. Introduction. The Travelling Salesman Problem (TSP) and in general vehicle rout-
ing and scheduling problems have been widely studied for more than three decades (see
[14] for a survey on the subject). The input of an instance of the problem is generally
a set of locations (points) in a metric space that are to be visited in such a way that the
total distance travelled or the completion time is minimized. A common characteristic
of almost all the approaches to the study of the problem is the off-line point of view. The
input is known completely beforehand.

However , in many routing and scheduling applications the instance only becomes
known in an on-line fashion. In other words, the input of the problem is communicated in
successive steps. Often it is not even possible to determine which is the last request, i.e.,
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when the instance is completely known. Anyhow, if the goal is to minimize the completion
time, waiting till all the information is available could imply a costly loss of time.

In this paper we consider a class of on-line variations of TSP in a metric space: while
the salesman is travelling, new sites to visit may be communicated to him. His goal is to
visit all the sites, minimizing the completion time.

This setting models many natural applications. Think for example of a salesman or a
repairman with a cellular phone, or of a robot that has to serve locations of its working
space (for example in the Euclidean plane) and of many other routing and scheduling
problems on a transportation network modelled with a graph. We refer to this problem
as theOn-Line Travelling Salesman Problem(OLTSP).

As the input to the salesman—from now on we refer to him as theserver—is com-
municated in an on-line way, the scheduled route will have to be updated also in an
on-line way during the trip. The fact that the schedule must be constructed based on
incomplete information means that in general no algorithm (polynomial or otherwise)
can be guaranteed to construct an optimal schedule on-line.

The most widely accepted way of measuring the performance of on-line algorithms is
competitive analysis. The quality of a certain on-line strategy is measured by the worst-
case ratio between the time needed by the on-line algorithm for a sequence of requests
and the optimal time needed by an algorithm that knows the sequence in advance. This
ratio is called thecompetitive ratioof the on-line algorithm. Therefore, an algorithm is
said to beρ-competitive if for every input its completion time is at mostρ times the
optimal completion time for the same input. The concept of competitive analysis has been
formalized in [18], although under the name of worst-case analysis of on-line algorithms
it dates back at least until the work of Graham [10] and Johnson [11]. The performance
of on-line strategies for a great variety of on-line problems has been analyzed according
to this concept: performance analysis of computer systems, data structures, scheduling,
motion planning, network management, financial decision making, etc. (for an overview
of the subject refer to [4]).

We present algorithms for the OLTSP and study their competitive ratio by comparing
their performance to the optimal solution of the corresponding off-line problem, which
is called the Vehicle Routing Problem with release times [16].

In that problem, each site must be visited at or after a given release time. The release
time of a request corresponds to the time in which the request is communicated to the
on-line server. The problem is NP-hard since it contains the Hamiltonian Path problem
as a particular case.

Several off-line variations of the problem have been studied, in which additional
constraints are imposed and particular metric spaces are considered. In [16] it has been
shown that if the metric space is a line the optimal solution may be found in quadratic time.
In [13] the metric space is restricted to being a tree and each request has, besides a release
time, an associatedhandling timethat is the time needed to serve it. The problem is shown
to be NP-hard in that context, and a 2-approximate solution is given. In general these
problems are calledrouting and scheduling with time window constraints. Sometimes
more than one server is considered, and other restrictions are given by requiring that
requests must be served before a specifieddeadline(see for example [20] and [21]).
Other related works are [2] and [6]–[8].
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A related on-line work [12] considers the problem of visiting the whole set of vertices
of an unknown graph, when the set of edges leaving a node is revealed only once the
node is visited. In our case, the metric space is completely known from the beginning,
but what is revealed in an on-line way is the set of locations that must be visited.

It is important to note that OLTSP is different from the famousk-server problem[15].
In that problem the requests have to be served in the order in which they are presented,
with the goal of minimizing the total distance travelled by thek servers. On the contrary,
in OLTSP the task is precisely to decide the order in which the requests will be served.

A recent paper [1] considers afixednumber of clients presenting sequences of requests
in a metric space, that must be served by a single server. At any time, each client has
at most one request to be served, after which a new one may be presented. The main
difference with our approach is that in this case the request sequence is dependent on
the behaviour of the algorithm.

We consider two versions of the basic problem that requires that all points presented
are visited. In the first version, that we callNomadic-OLTSP (or simply N-OLTSP), this
is the only requirement. Adding the constraint that the trip must end at its departure point
defines the problem that we callHoming-OLTSP (or simply H-OLTSP).

Addition of the constraint of ending the trip at the departure point changes the nature
of the problem (and hence the kind of applications). Lower bounds and algorithms for
the two versions are quantitatively and qualitatively different. In fact, knowing that the
server has to return to the departure point provides additional information to the on-line
algorithm, that allows it to achieve a better competitive ratio.

In this work we propose on-line deterministic algorithms for both N-OLTSP and H-
OLTSP, and show that they areρ-competitive for suitable constantsρ. We establish such
results for the problems defined on a wide class of metric spaces that we call the class
M, whose precise definition can be found at the beginning of the following section. In
the particular case in which the metric space is thereal line, different algorithms are
devised and stronger ratios of competitiveness are derived.

For N-OLTSP, no on-line algorithm can be better than 2-competitive, even for the line.
For metric spaces belonging to the classMwe propose a 2.5-competitive algorithm; for
the line the best proposed algorithm has a competitive ratio of 7/3.

For H-OLTSP we propose abest possible2-competitive algorithm for metric spaces
belonging to the classM, while for the line we devise a 1.75-competitive algorithm that
compares with a≈1.64 lower bound.

Our best algorithms for metric spaces belonging toM do not run in polynomial
time unless P= NP, since they use subroutines for optimally solving the TSP. How-
ever, one can obtain almost as good performance from polynomial-time algorithms: we
show how to obtain 3-competitive polynomial-time algorithms for both N-OLTSP and
H-OLTSP. As we mentioned before, the on-line nature of the problem is a source of
difficulty independent of its computational complexity, and therefore on-line algorithms
achieving good competitive ratios are also of interest if their time requirements are not
polynomially bounded.

The paper is organized as follows. In Section 2 we formally define the model. In
Section 3 we present our lower bounds for the different versions of the problem. Section 4
contains our best algorithms for metric spaces belonging toM, while Section 5 deals with
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polynomial-time algorithms. Section 6 proposes algorithms for the real line. To facilitate
the exposition, every section first describes results on N-OLTSP and afterwards for H-
OLTSP. Finally Section 7 contains open problems and interesting related problems for
future research.

2. The Model. The input of OLTSP consists of a metric spaceM , from the classM
defined below, a distinguished pointo (the origin) ofM , and a sequence of pairs〈ti , pi 〉
wherepi is a point ofM andti is a number representing the moment in which the request
is presented. Theti ’s form an ordered sequence in the sense that 0≤ ti ≤ tj if i < j .

A server is located at the origino of the metric space at time 0, and moves not faster
than unit speed.

We use the definition of metric space as a spaceM with the following properties:
(1) It is symmetric, i.e., for every pair of pointsx, y in M , d(x, y) = d(y, x), where
d(x, y) denotes the distance fromx to y. (2) d(x, x) = 0 for any pointx in M . (3) It
satisfies the triangle inequality, i.e., for any triple of pointsx, y andz in M , d(x, y) ≤
d(x, z)+ d(z, y).

Our class of metric spacesM contains all continuous metric spaces, i.e., every metric
spaceM having the property that the shortest path fromx ∈ M to y ∈ M is continuous,
formed by points inM , and has lengthd(x, y). For continuous metric spaces the times
at which a request can be made can be any non-negative real number.

NextM contains discrete metric spaces representable by an underlying graph with
all edges having unit length. The vertices are the points of the metric space. Working on
such spaces time needs to be discretized, i.e., the timesti at which requests are made are
non-negative integers, and the server determines its strategy at integer points in time. At
each integer time, the server is at some point in the metric space (vertex in the graph)
and either remains there or moves in one time step to a neighbouring point in the metric
space.

Thus, an example of a model that we do not consider here is one in which the server
moves on a road network of freeways and a request can arrive while he is moving between
two exits and he has to proceed to the next exit before being able to change his strategy.
In our model the server would be allowed to do a U-turn and return to the previous exit.

For any pathT in M , let |T | denote its length. Note that ifT is a path fromx to y,
we must have|T | ≥ d(x, y) by the triangle inequality.

As mentioned in the Introduction we consider two versions of the problem:

TheNomadic On-Line Travelling Salesman Problem(N-OLTSP), defined as minimiz-
ing the completion time required to serve all presented requests.

TheHoming On-Line Travelling Salesman Problem(H-OLTSP), defined as minimiz-
ing the completion time required to serve all presented requests and return to the
origin o.

On-line algorithms for the problems N-OLTSP and H-OLTSP determine the behaviour
of the server at a certain momentt as a function of all requests〈ti , pi 〉 such thatti ≤ t .

We denote the completion time of the solution produced by an on-line algorithm
OL by ZOL and that of the optimal (off-line) solution byZ∗. An on-line algorithm for
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OLTSP isρ-competitive if for any sequence of requestsZOL ≤ ρZ∗. Let pOL(t) and
p∗(t) respectively denote the positions of OL’s server and the optimal off-line server at
time t . At time 0 the server is located at the origino, pOL(0) = p∗(0) = o.

3. Lower Bounds. In this section we derive lower bounds on the competitive ratio of
any on-line strategy for serving the requests in the versions of the problem.

3.1. A Lower Bound for N-OLTSP. We show that no on-line algorithm can achieve a
competitive ratio smaller than 2 for N-OLTSP. With this aim, we provide a sequence of
requests for which no algorithm can finish within less than twice the optimal off-line time.

THEOREM3.1. Anyρ-competitive algorithm for N-OLTSP hasρ ≥ 2.The lower bound
is achieved on the real line.

PROOF. The proof is derived from the following simple argument. Consider the problem
on the real line with the abscissa 0 as the origin. An adversary gives a request at time 1
in either 1 or−1, depending on whether at time 1 the on-line server is in a negative or
a positive position, respectively. Thus, the adversary has completed at time 1, whereas
the on-line server needs at least 2, with 2 sufficing when it is at 0 at time 1.

We observe that the former proof can be easily adapted to show that the same lower
bound holds for randomized algorithms against an oblivious adversary. The same sim-
ple sequence can be used replacing the “position” of the on-line server by “expected
position”. For the definition of oblivious adversary refer to [3].

3.2. A Lower Bound for H-OLTSP. In this section we show a lower bound on the
competitive ratio of any algorithm for H-OLTSP on metric spaces belonging toM.

THEOREM3.2. For anyε > 0, anyρ-competitive algorithm for H-OLTSP for metric
spaces belonging toM hasρ ≥ 2− ε.

PROOF. Take as the metric space the boundary of the unit square [0,1]2. We denote by
(x, y) a point of abscissax and ordinatey. Given two points of the square(x1, y1) and
(x2, y2), we denote by [(x1, y1), (x2, y2)] the segment that is obtained by traversing the
square in clockwise direction from(x1, y1) to (x2, y2). The distance between two points
is defined as the length of the shorter of the two segments of the boundary of the unit
square between the two points. As the origin we take the point(0,0). At time 0, for a fixed
n ≥ 1, requests are given at points of the square{(0, i /n), i = 0, . . . ,n}∪{(1, i /n), i =
0, . . . ,n} ∪ {(i /n,0), i = 1, . . . ,n − 1} ∪ {(i /n,1), i = 1, . . . ,n − 1}. Thus(0,0),
(1,0), (0,1) and(1,1) belong to this set of points. Notice that these requests can be
served optimally in timeZ∗ = 4.

We first show that for someδ, with 0≤ δ ≤ 2, at time 2+ δ any on-line server must
be in one of the two points at distance 2− δ from the origin (not necessarily requested
points). For this purpose define the functionf : [0,2]→ [0,2] as the distance from the



Algorithms for the On-Line Travelling Salesman 565

Fig. 1.The lower bound for H-OLTSP.

point (1,1) at time 2+ x. Then the functiong(x) = f (x) − x has the property that
g(0) ≥ 0 andg(2) ≤ 0. Sinceg is continuous there must be at least one pointδ with
0≤ δ ≤ 2 with g(δ) = 0.

Take the smallest value ofδ for which this holds. Without loss of generality we assume
that this pointpOL(2+δ) is on the path between(0,0)and(1,1) that passes through(0,1).
At time 2+δ the server has served the requests on the segmentT1 = [(0,0), pOL(2+δ)].
Additionally, it may have visited requests on a segmentS1 = [(x1, y1), (0,0)] and
requests on a segmentS2 = [ pOL(2 + δ), (x2, y2)] (see Figure 1). The total length
of these latter two segments is no more thanδ since the server is at a distance 2− δ
from the origin and must have travelled each of these segments at least twice. Thus,
|T1| + |S1| + |S2| ≤ 2. This implies that the on-line algorithm has not touched any
requested point of a segmentT2 = [(x2, y2), (x1,0)] of length at least 2.

Now, at time 2+ δ, a new set of requests is given in each of the points on the segment
T1 = [(0,0), pOL(2+ δ)] of length 2− δ, that were requested before and visited by the
on-line server. This new set of requests ends the sequence. The optimal completion time
for the whole sequence is stillZ∗ = 4 since an anti-clockwise tour of the square visits
any request not earlier than its release time. Given the situation of the on-line server
at time 2+ δ one of the two following options will give the best possible completion
time:

1. Traverse the segment [pOL(2+δ), (x1, y1)] with the exception of a segment [(x1, y1),

(x3, y3)] of size at most 1/n twice. The traversed segment is therefore of size at least
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2− 1/n. After this traverse the segmentT1 once. The cost of the algorithm in this
case isZOL ≥ (2+ δ)+ (4− 2/n)+ (2− δ) = 8− 2/n.

2. Traverse first the segmentT1[(0,0), (0,1/n)] twice and then the segment [pOL(2+
δ), (0,0)] once. The cost of the algorithm in this case isZOL = (2+ δ)+ (4− 2δ −
2/n)+ (2+ δ) = 8− 2/n.

Therefore, for any arbitrarily smallε > 0, the ratio between the on-line server’s
completion time and the optimal completion time can be made 2− ε by choosing a
sufficiently large value forn.

We emphasize that this theorem says thatsome metric spacesinM can induce any
algorithm for H-OLTSP to be no less than 2-competitive. Therefore, better competitive
ratios may be possible for particular metric spaces, for instance for the line, as we shall
see in what follows.

3.3. A Lower Bound for H-OLTSP on the Line. In this subsection we present a lower
bound on the competitive ratio of algorithms for H-OLTSP defined on the real line. We
study this case separately so as to compare the lower bound with the competitive ratio
of an algorithm for the problem on the real line presented in Section 6.2.

An argument similar to that used for the lower bound for N-OLTSP (Theorem 3.1)
could be used to obtain a 3/2 lower bound for H-OLTSP, both for deterministic and
randomized algorithms. However, a stronger lower bound for deterministic algorithms
is proved below.

THEOREM3.3. Any ρ-competitive algorithm for H-OLTSP on the real line hasρ ≥
(9+√17)/8≈ 1.64.

PROOF. Suppose OL is aρ-competitive on-line algorithm for H-OLTSP withρ <

(9+ √17)/8. An adversary could proceed as follows. Before timet = 1 no requests
are presented. At that moment, the positionpOL(1) of the server of theρ-competitive
on-line algorithm OL must be inside the interval [−(2ρ − 3), (2ρ − 3)], and note that
2ρ − 3< 1 sinceρ < 2. Notice that ifpOL(1) > (2ρ − 3) the first (and unique) request
of the sequence would be at point−1, giving ZOL > 1+ (2ρ − 3) + 2 = 2ρ, because
OL has to travel from its current position to−1 and back to 0. On the other hand, for this
sequenceZ∗ = 2, and therefore the algorithm would not beρ-competitive. The case in
which pOL(1) < −(2ρ − 3) is symmetric.

Thus, suppose thatpOL(1) ∈ [−(2ρ−3), (2ρ−3)]. Now, at timet = 1, the adversary
presents two simultaneous requests at points−1 and 1. At timet = 3, the on-line server
cannot have servedboth requests. Suppose, without loss of generality, that it has not
served the request in−1.

We now show that if−(7 − 4ρ) < pOL(3) < (7 − 4ρ), then OL cannot beρ-
competitive. Note that 7− 4ρ < 1 sinceρ < 7/4. In this case the adversary could be in
p∗(3) = 1, present a new request in +1 and return to the origin with a completion time
Z∗ = 4. OL, however, would still have to serve requests in both extremes, and hence
ZOL > 3+ 1− (7− 4ρ)+ 3 = 4ρ, since starting at timet = 3 it would have to go to
one of the extremes and then to the other and back to 0.
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Note that sinceρ < (9+√17)/8, we have that the interval [−(7− 4ρ), (7− 4ρ)]
strictly contains the interval [−(2ρ − 3), (2ρ − 3)].

Thus, we are left with two cases to be considered.

1. At timet = 3 the on-line server has not yet served +1, and−1≤ pOL(3) ≤ −(7−4ρ)
or (7− 4ρ) ≤ pOL(3) ≤ 1.

2. At timet = 3 the on-line server has served +1, and(7−4ρ) ≤ pOL(3) ≤ 1. The server
cannot be to the left of−(7− 4ρ), since it started to move towards+1 after time 1
from a position not to the right of(2ρ−3), and 1+(1−(2ρ−3))+(1+(2ρ−3)) = 3.

We notice that in both cases the following situation occurs: the on-line server is within
distance 1− (7− 4ρ) of the extreme on one side and has not served the extreme on
the other side. This property is sufficient for the rest of the proof, where we suppose
that the on-line server is near 1 and has not served the request in−1 (the other case is
symmetric).

In this case the adversary has so far served−1, is at positionp∗(3) = +1 and finishes
with Z∗ = 4. Then anyρ-competitive on-line algorithm has to pass point 0 no later
than 4ρ − 2. We denote the time at which the on-line server crosses the origin as 3+ q.
Therefore we have

q ≤ 4ρ − 5.(1)

At time (3+ q) the adversary can be in position(1+ q) and place a request at that
point and return to 0. For this sequence we have thatZOL = 7+3q andZ∗ = 4+2q, and
thereforeZOL/Z∗ = (7+ 3q)/(4+ 2q). By hypothesis OL isρ-competitive, so that

ρ ≥ 7+ 3q

4+ 2q
.

This is a monotonously decreasing function ofq, and by inequality (1) we get

ρ ≥ 7+ 3(4ρ − 5)

4+ 2(4ρ − 5)
.(2)

The least value ofρ that satisfies inequality (2) is the value that achieves equality,
that is(ρ = (9+√17)/8.

4. Algorithms for Metric Spaces inM. In this section we present competitive algo-
rithms for metric spaces belonging toM. The first algorithm we analyze is based on a
greedy strategy. Essentially it follows at each time the shortest route that serves all the
requests with, for H-OLTSP, the additional constraint of terminating at the origin of the
metric space. For H-OLTSP we also present a more complicated algorithm that attains
the best possible competitive ratio by following different rules for requests “close” to
the origin and for requests “far” from the origin. The reason is that requests close to the
origin can be served when the server is on the way back to the origin, the endpoint of
his route. Clearly, these considerations do not hold for N-OLTSP, where the server can
end his work in any position of the metric space.

The above-mentioned strategies usesuper polynomial time, assuming that P6= NP,
since they need to compute an optimal path or an optimal tour over a set of points. We also
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present polynomial-time strategies (see Section 5) with worse competitive ratios, based
on polynomial approximation algorithms to compute a path or a tour over a set of points.

4.1. An Algorithm for N-OLTSP. For N-OLTSP we first analyze an algorithm based on
a greedy strategy that follows a shortest Hamiltonian path on the set of requests that has
not been visited yet. The route is re-computed each time a new request arrives. Clearly,
each computation of a shortest Hamiltonian path may take exponential time. We refer to
this as the Greedy algorithm. The algorithm is defined for any metric space belonging
to the classM.

The algorithm is described completely by stating the action taken at any momentt ,
when a new request arrives. LetS be the set of all requests presented untilt , including
the new one and the origino.

In order to simplify matters, we restrict the greedy server to move only on the shortest
path between pairs of points inS, and therefore we call the algorithm GTR, for “Greedily
Travelling between Requests”. Assume that at timet , when a new request is presented,
the on-line server’s position,pGTR(t), is on the shortest path betweenx andy in S. Then
the algorithm computes and follows the shortest route that first visits eitherx or y and
then the yet unserved requests.

GTR achieves a competitive ratio of 5/2, as we establish in the following theorem.

THEOREM4.1. GTR is a5/2-competitive algorithm for N-OLTSP, and the ratio is tight.

PROOF. Let timet be the time at which the last request is presented. We first state two
lower bounds on the optimal completion time required. First,Z∗ ≥ t since also in the
optimal solution a request cannot be served before the time at which it is presented.
For the second lower bound we defineT as the optimal Hamiltonian path on the setS,
constrained to haveo as one of the two extreme points. Notice thatT does not take the
release times of the requests into account. ThenZ∗ ≥ |T | since any algorithm must visit
all points inS. Thus, provingZGTR ≤ t + 3

2|T | proves the theorem.
Let a be the endpoint ofT , the starting point iso. Observe thatpGTR(t), the position

of GTR at timet , is somewhere on the shortest path between two points ofS, sayx and
y. Assume that followingT fromo toa, x is visited beforey. Then min{d(pGTR(t), x)+
d(x,o),d(pGTR(t), y) + d(y,a)} ≤ 1

2|T |. Without loss of generality assume that the
first term is smaller than the second one. Consider the route that goes frompGTR(t)
to x, then too and finally followsT until a. Its length is at most32|T | and is also
an upper bound on the length of the route followed by GTR starting at timet , and
hence the on-line completion time is bounded from above byt + 3

2|T | proving the
theorem.

The following example shows that the ratio of 5/2 is asymptotically tight. Note that if
all the requests are located on the real line, GTR boils down to going always to the nearest
extreme of the smallest interval containing the requests that are yet to be visited. Ties
are broken in an arbitrary way. This is not a limitation since any choice can be enforced
by displacing requests a negligible distance. The example is illustrated in Figure 2.

Let 0 be the origin. Consider a sequence starting at time 1 with two requests, one in
−1 and one in 1, and suppose without loss of generality that GTR first goes towards 1.
At time 3 it will be back in 0 and the adversary may put a request at point 1 again. Let
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Fig. 2.A worst-case sequence for GTR.

t0 = 3, p0 = 1 and in generalti = 5
3ti−1 − 2

3, and pi = ti − 2, for i = 1,2,3, . . . ,n.
The sequence continues with a request in pointpi at timeti . The adversary’s completion
time for this sequence will be exactlytn, since it can start going to−1 and then going
always to the right arriving at each pointpi when the request is presented. As for the
completion time of GTR, we will show that at timetn it is in the middle of the interval
[−1, pn], and hence it must still travel 3/2 times the length of the interval, as it has
not yet served the requests in the extremes. The total time needed will then be equal to
tn+ 3

2(pn+ 1) = tn+ 3
2(tn− 1), and hence the ratio between the solution value of GTR

and that of the adversary tends to 5/2 asn tends to infinity.
We show that for everyi , at timeti the position of GTR is(ti −3)/2, that is, the centre

of the interval it still has to visit. This is obvious fori = 0: pGTR(3) = 0. Assuming the
hypothesis is true fori we will prove it for i + 1. At time ti it leaves(ti − 3)/2 towards
the right extreme, where it arrives at timeti +(ti −3)/2+1= 3

2ti − 1
2. Then it turns back

towards−1, and at timeti+1 = 5
3ti − 2

3 will be at pointti −2− [( 5
3ti − 2

3)− ( 3
2ti − 1

2)] =
(ti+1− 3)/2, the centre of the new interval.

4.2. An Algorithm for H-OLTSP. The greedy algorithm GTR presented for N-OLTSP,
can be transformed in a direct way into a greedy algorithm for H-OLTSP, by replacing
“paths” by “paths finishing in the origino”. A similar analysis shows that GTR is 5/2-
competitive for the H-OLTSP. It is not sure however that this ratio is tight in this case for
the metric spaces belonging toM. For the real line it can be shown that its competitive
ratio is precisely 2, although better algorithms for this case exist as we shall see in
Section 6.

However, for H-OLTSP we can exploit the requirement of having to return to the
origin, within a greedy framework. This is done by making a difference between requests
that are relatively close and those that are relatively far from the origin, where we postpone
serving the former set of requests. The algorithm that we devise, and which we call PAH
(for Plan-At-Home) achieves a competitive ratio of 2 for any metric space belonging
toM. We emphasize that this is equal to the lower bound derived in Section 3.2. We
abbreviate the positionpPAH(t) of the PAH algorithm byp.

1. Whenever the server is at the origin, it starts to follow an optimal route that serves all
the requests yet to be served and goes back to the origin.
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2. If at time t a new request is presented at pointx, then it takes one of two actions
depending on its current positionp:
2a. If d(x,o) > d(p,o), then the server goes back to the origin (following the

shortest path fromp) where it appears in a Case 1 situation.
2b. If d(x,o) ≤ d(p,o), then the server ignores it until it arrives at the origin, where

again it re-enters Case 1.

Notice that requests that are presented between an occurrence of Case 2a and the
arrival at the origin will not make the server deviate from his current shortest path back
to the origin.

THEOREM4.2. PAH is2-competitive.

PROOF. Let t be the time of the last request, and let the position of this request bex.
We show that in each of the Cases 1, 2a and 2b PAH is 2-competitive.

Let T∗ be the optimal tour that starts at the origin, serves all the requests presented
and ends at the origin. Clearly,Z∗ ≥ t since no algorithm can finish before the last
request is presented. Also, trivially,Z∗ ≥ |T∗|.

1. In Case 1 PAH is at the origin at timet . Then it starts an optimal tour that serves
all the unserved requests and goes back to the origin. The time needed by PAH is
ZPAH ≤ t + |T∗| ≤ 2Z∗.

If, when the new request arrives, PAH is not at the origin, we can distinguish two
cases, corresponding to Cases 2a and 2b.

2a. d(o, x) > d(o, p). Then PAH goes back too, where it will arrive before timet +
d(o, x). After this, PAH computes and follows an optimal tour through all the unserved
requests. Therefore,ZPAH < t + d(o, x)+ |T∗|.

Notice thatZ∗ ≥ t + d(o, x), since from the timet when the request is presented
every algorithm has to travel at least the distance from the request to the origin. This,
together withZ∗ ≥ |T∗| implies thatZPAH < 2Z∗.

2b. d(o, x) ≤ d(o, p). Suppose PAH is following a routeR that has been computed the
last time it was at the origin. LetQ be the set of requests that have been temporarily
ignored since the last time PAH left the origin. Letq be the location of the first request
inQ served by the adversary, and lettq be the time at whichq was presented. LetP∗Q
be the shortestpath that starts atq, visits all the points inQ and ends ato. Clearly,
Z∗ ≥ tq + |P∗Q|.

At time tq, the distance that PAH still has to travel on the routeR before arriving
at o is at most|R| − d(o,q), sinced(o, p(tq)) ≥ d(o,q) implies that PAH has
travelled on the routeR a distance not less thand(o,q). Therefore, it will arrive at
o before timetq + |R| − d(o,q). After that it will follow an optimal tourT∗Q that
covers the setQ of yet unserved requests. Hence, the total time to completion will
be ZPAH ≤ tq + |R| − d(o,q) + |T∗Q|. Because|T∗Q| ≤ d(o,q) + |P∗Q|, we have
ZPAH ≤ tq + |R| − d(o,q) + d(o,q) + |P∗Q| = tq + |R| + |P∗Q|. Since, obviously,
Z∗ ≥ |R| and, as established before,Z∗ ≥ tq + |P∗Q| we have thatZPAH ≤ 2Z∗.
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The competitive ratio of 2 achieved by PAH is the best possible for metric spaces
belonging to the classM (see Section 3.2). It is tight even for the real line as will be
seen from the following instance where as usual point 0 is taken as the origino. The
sequence of requests starts with a request at time 1 at position+1. PAH remains at the
origin until time 1 when it leaves towards 1. Then a sequence of requests is presented,
one each time PAH arrives at point+ε, at a point “slightly” to the left of−ε, in such a
way that PAH always turns back to 0. This goes on until time 2+ε. The optimal strategy
consists of serving first the request in +1 and then all the requests to the left of 0 yielding
a completion time arbitrarily close to 2+ 2ε, while PAH will be to the left of+ε at least
until time 2+ε, yielding a completion time of at least 4. Makingε arbitrarily small gives
a ratio of 2. In Section 6.2 we give a better algorithm for the real line.

5. Polynomial-Time Algorithms for OLTSP. We now turn the attention to polynomial-
time competitive algorithms for metric spaces belonging toM. Even though competi-
tiveness and computational complexity are not related concepts, for practical applications
it is obviously relevant to make available polynomial-time algorithms with a good com-
petitive ratio.

In the following we present 3-competitive polynomial-time algorithms for metric
spaces belonging toM that use two well-known approximation algorithms for the
Euclidean TSP as a subroutine.

5.1. A Polynomial-Time Algorithm for N-OLTSP. One known approximation algorithm
for TSP in which distances satisfy the triangular inequality (1TSP) is the 2-approximate
Minimum Spanning Tree heuristic (e.g., see [14]). The MST heuristic provides a tour
whose cost is at most twice the length of a minimum spanning tree. This heuristic also
provides a 2-approximation algorithm to the Hamiltonian Path Problem, since the size of
a minimum spanning tree is a lower bound on the total length of an optimal Hamiltonian
path.

Let X be a set of points of the metric spaceM . We denote by MST(X) the size of
the minimum spanning tree of the complete graph with a set of verticesX, every edge
between two pointsx, y in X is weighted with the distanced(x, y).

Before presenting the algorithm, we give a preliminary lemma.

LEMMA 5.1. For every pair of points x and y in a set X, there exists a2-approximate
tour on X in which x and y are adjacent.

PROOF. Consider the minimum spanning tree overX. The MST heuristic consists of
doubling all the edges of the tree, which yields an Eulerian graph, i.e., a connected graph
in which all vertices have even degree. The total edge length of this graph is 2MST(X),
which is at most twice the optimal tour length. We then use the fact that for any Eulerian
graph and any edge in that graph, a standard short-cutting argument based on the triangle
inequality will construct a TSP tour that contains that edge and has length no more than
the sum of the graph’s edge lengths. Now note that starting from the doubled tree, we will
still have an Eulerian graph if we replace a shortest path betweenx andy by a direct edge
betweenx andy. This is because (a) all vertex degrees remain even (since the degrees of
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x andy remain unchanged and those of the internal vertices of the path are reduced by
2) and (b) the graph remains connected (one copy of the removed path must still remain
in the graph). By the triangle inequality, the edge replacement cannot increase the total
edge length of the graph, so by the above observation the lemma follows.

Let Sbe the set of requests still to be served. Let6 be the set containing all presented
requests and the origino, and letT be the shortest Hamiltonian path over6. We assume
that the on-line server is at positionp on the shortest path from the last served request,
x, to an unserved request,y, when a new request is presented. The algorithm that we
propose, using the MST heuristic, is similar to the greedy algorithm described before
in Section 4.1. Instead of the optimal route through all the requests that still have to
be served, an MST through all these points and the last visited pointx is computed. A
2-approximate path starting with the route fromx to y is now followed.

THEOREM5.2. The algorithm that uses the MST heuristic is3-competitive for N-OLTSP,
and the ratio is tight.

PROOF. We first note that

MST({x} ∪ S) ≤ MST(6) ≤ |T |.
Let t be the time the last request is presented. Att , the on-line server is on the path
leading fromx to a pointy ∈ S. By Lemma 5.1 this is a legal start of a 2-approximate
path on{x}∪S. Hence, the on-line completion time isZOL ≤ t+2MST({x}∪S). Since
t and MST({x} ∪ S) are both lower bounds on the optimal off-line completion time, the
total cost of the on-line server is less than three times the cost of the optimal off-line
algorithm.

The following example on the real line shows that 3 is a tight bound on the competitive
ratio. Let the origino be at point 0. At time 0 a request at point 1 is presented. At timeε a
request at point 0 is presented. The MST contains the segment01, and the on-line server
is at pointε and continues to follow the segment01 until 1. At time 1+ ε the on-line
server is at position 1− ε and a new request is given at point 1. Now the on-line server
goes towards 0 and afterwards it goes back to 1. The total time is 3, while the optimal
solution takes 1+ ε.

It is interesting to note that the competitive ratio 3 obtained by this strategy is exactly
the sum of the factor 2 of the approximation ratio of the heuristic plus 1, the same that
would be obtained following the heuristic path after the last request is presented. Such
a strategy cannot be considered because no information about which is the last request
is given to the on-line algorithm.

5.2. A Polynomial-Time Algorithm for H-OLTSP. In this section we present a 3-com-
petitive polynomial algorithm for H-OLTSP that uses the 3/2-approximate polynomial
algorithm by Christofides [14] for TSP on metric spaces. Observe that this heuristic has
not been used for N-OLTSP since Lemma 5.1 does not hold for the 3/2-approximate
algorithm.
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Let S be the set of requests that have not yet been served by the on-line algorithm
plus the origino, let CHR(S) be the length of a 3/2-approximate tour over the setS, and
let T be the optimal tour overS. Moreover, let6 be the set of presented requests plus
the origino, and letT be the optimal tour over6.

The algorithm will always move on a shortest route between pairs of points of6.
Assume that at timet , when a new request is presented, the server is travelling from
point x to point y. The algorithm follows the shortest route to the origino throughx or
y, and then a 3/2-approximate tour overS.

THEOREM5.3. The algorithm that uses Christofides’ heuristic is3-competitive for H-
OLTSP

PROOF. Let t be the time the last request is presented. Denote withpOL(t) the position
of the on-line server that is travelling from pointx to point y of 6. Clearly, botht
and|T | are lower bounds on the optimal off-line completion time. LetD = d(o, x) +
d(x, y)+ d(o, y). Then we haveZ∗ ≥ D by the triangle inequality, since the pointso,
x andy must occur in that order in some orientation of the optimal tour. Furthermore,
d(o, pOL(t)) ≤ D/2, again by the triangle inequality. Thus,ZOL ≤ t + d(o, pOL(t))+
CHR(S) ≤ Z∗ + 1

2 Z∗ + 3
2|T | ≤ 3Z∗.

We do not have a proof of the tightness of the competitive ratio for this heuristic.

6. OLTSP on the Real Line. In this section we consider the particular case in which
the metric space is the real line. Clearly, all the algorithms presented for metric spaces in
M can also be applied to this case. Notice that the examples of tightness for the analysis
of both the 5/2-competitive algorithm for N-OLTSP and the 2-competitive algorithm for
H-OLTSP are given on the real line. Hence, there is no hope that those algorithms have
a better performance on the real line.

In order to obtain a better performance we have to design specific algorithms. In
particular, a 7/3-competitive algorithm for N-OLTSP and a 7/4-competitive algorithm
for H-OLTSP will be given. These competitive ratios are fairly close to the lower bounds
for the problems on the real line presented in Section 3, 2 for N-OLTSP and≈ 1.64 for
H-OLTSP.

6.1. An Algorithm for N-OLTSP on the Line. In this section we give an algorithm for
N-OLTSP on the real line that achieves a competitive ratio of 7/3. As we did before, we
consider the origino at point 0.

Let I be the smallest interval containing the presented requests not yet served. The
algorithm, which we call ENO, for “serve Extreme Nearest to the Origin first”, consists
in visiting I always starting from its extreme that is nearer to the origin.

THEOREM6.1. Algorithm ENO is7/3-competitive, and the ratio is tight.

PROOF. As usual we assume that timet is the time of the last request.
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Without loss of generality we suppose that of the two extreme requests not yet served
at time t the leftmost one is nearest to the origin, and that the rightmost one, the one
furthest from the origin, has positive abscissa.

At time t the intervalI = [x, X] is still to be served, withX > 0 and|x| ≤ X, where
|x| denotes in this proof the absolute value ofx. Observe that ifx > 0, then I does
not include the origin. Moreover, letX be the rightmost request in the past and let−Y
be either the leftmost request in the past or 0 in case the leftmost request has positive
abscissa. LetpENO(t) be the position of ENO at timet . Clearly, at timet the following
holds: t ≤ Z∗, x ≥ −Y, X ≤ X and−Y ≤ pENO(t) ≤ X . We consider three cases
depending on the positionpENO:

1. −Y ≤ pENO(t) ≤ x. ENO is to the left ofx and will finish its work visiting the
interval that lies to its right once. SincepENO(t) ≥ −Y the total time needed by ENO
is ZENO ≤ t +Y+ X. To serve the whole set of requests, the whole interval [−Y,X ]
must be travelled at least once, whenceZ∗ ≥ Y +X . Therefore, the ratio in this case
is

ZENO

Z∗
≤ (t + Y + X)

Z∗
≤ 1+ Y + X

Y + X ≤ 2,

sinceZ∗ ≥ t andX ≤ X .
2. x ≤ pENO(t) ≤ |x|, with x < 0 (this case coincides with the previous one ifx > 0).

In the worst case ENO is in position|x| and must visit first the leftmost extreme in
positionx. The time needed by ENO isZENO ≤ t + 3|x| + X. The optimal time is at
leastZ∗ ≥ 2|x| + X . From this and the assumption that|x| ≤ X ≤ X we have

ZENO

Z∗
≤ (t + 3|x| + X)

Z∗
≤ 1+ (3|x| + X)

(2|x| + X ) ≤
7

3
.

3. |x| < pENO(t) ≤ X . We consider two different cases:
• In the optimal solutionx is visited afterX . Then we haveZ∗ ≥ 2X − x. At time

t ENO must cover at most twice the interval [x,X ], in case it is very close to the
rightmost extremeX . Then it will finish by ZENO ≤ t − 2x + 2X time and the
ratio is

ZENO

Z∗
≤ 1+ (−2x + 2X )

(−x + 2X ) ≤
7

3
.

• In the optimal solutionX is visited afterx. Suppose that the optimal off-line
algorithm visitsx at timed for the last time (withd ≥ |x|, obviously). Then, at
time d, it still has to travel at least fromx toX . Thus,Z∗ ≥ d − x + X . If d ≥ t
we have that

ZENO

Z∗
≤ (d − 2x + 2X )

(d − x + X ) ≤ 2.

Otherwise, ifd < t , the following two claims hold:

CLAIM 6.2. At every time t′, d ≤ t ′ ≤ t , pENO(t ′) ≥ |x|.
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PROOF. We prove this by contradiction. The time at which the request in position
x is presented is less thand since we assumed that at timed the optimal off-line
algorithm has servedx for the last time. Suppose ENO is inpENO(t ′) ≤ x at
time t ′. This implies that at timet the request inx has already been served since
pENO(t) ≥ x, which is a contradiction. This proves the claim forx ≥ 0. Forx < 0,
supposex < pENO(t ′) < |x|. Becausex remains unserved at timet , ENO must
have remained to the right ofx until that time. Thus, sincex is the leftmost unvisited
request at timet , it must also have been so at timed. For ENO to end up to the
right of |x| at timet , as we are assuming in this case, it would have to travel away
from x. However, this could have happened only as long as the rightmost unvisited
request at the time was less than or equal to|x|, and so could not have caused ENO
to be at the right of|x| at timet , a contradiction.

CLAIM 6.3. Starting at time d ENO moves to the left until time t.

PROOF. From the previous claim we know that between timed and timet ENO is
always to the right of|x|. We notice that at any time during this period the extreme
point of the interval of yet unserved requests that is nearest to the origin must be
inside [−|x|, |x|], implying that ENO always moves to the left during this period.
This can be readily seen from the fact that, given the previous claim, during the
whole periodx always remains the leftmost point not yet served, and the on-line
server is to the right of|x| at timet .

Thus, at timed ENO starts from a positionpENO(d) ≥ |x| to travel to the left and
at timet it is still to the right of|x|. Therefore,ZENO ≤ d+ 2X − 2x yielding the
ratio

ZENO

Z∗
≤ (d − 2x + 2X )

(d − x + X ) ≤ 2.

We finally prove that there is a sequence of requests for which ENO achieves a ratio
of 7/3. This case is illustrated in Figure 3.

Fig. 3.A worst-case sequence for the ENO algorithm.
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At time 1 two requests in−1 and 1/2 are presented. At time 1 ENO leaves 0 towards
1/2 and arrives at the origin at time 2 when a new request is presented in 1− ε. Again,
ENO goes to the right and arrives in 1− ε at time 3− ε. At that time a new request
is given in 1+ ε and ENO goes to the left since the extreme point in−1 is nearer to
the origin than 1+ ε. Altogether ENO takes time 7− ε to serve the requests, while the
optimal off-line solution needs 3+ ε. The ratio tends to 7/3 asε tends to 0.

6.2. An Algorithm for H-OLTSP on the Line. In this section we present an algorithm
for H-OLTSP on the real line whose competitive ratio is 7/4. We call this algorithm PQR
(for Possibly-Queue-Requests). As in PAH, the 2-competitive algorithm for any metric
space inM (see Section 4), PQR is based on the idea of postponing requests close to
the origin.

At any point in time letS be the set of requests unserved by PQR and letQ, the
queue, be the subset ofS containing the requests that are temporarily ignored. PQR
always follows the shortest tour from its current position through the setP = S\Q
finishing at the origin, followed by the shortest tour serving the requests inQ.

PQR works in phases. The first phase starts with the first request, and each successive
phase starts when a new request is presented that is not on the currently scheduled tour
and whose absolute value is bigger than that of any other unserved request.

At the beginning of a phase, PQR schedules the shortest route that, starting from its
current positionpPQR(t), serves all the unserved requests and goes back to the origin.
We call this route thegreedy route. Requests may be presentedduring the phase. Some
of them may call for computation of a new greedy route, while others are simply added
toQ and cause a recomputation of the shortest tour throughQ.

We denote the current route remaining to be traversed asR, with R being the
concatenation ofG, the part of the most recently computed greedy tour that remains
to be traversed (and will visit all the cities inP) followed byH, the optimal tour forQ.

During a phase, we refer to thelong sideas the half-line from 0 on which the request
whose presentation caused the start of the phase is located. The other side is then referred
to as theshort side.

When a phase starts the setQ is empty. By the construction of our algorithm,Q will
only contain requests on the short side. Requests are removed fromQ as soon as they
are served.

PQR is described completely by its behavior when a new request is presented, say at
time t .

1. If the new request is on routeR, then proceed followingR, add the request toP
orQ, depending on whether it is first visited inG orH, and serve the request when
visited; else

2. If the new request is on the long side, then empty the setQ and redefineR as the
newly computed greedy route. If the new request is further from the origin than any
unserved request, then also anew phasestarts; else

3. If the new request is on the short side and it is further from the origin than any
unserved request then anew phasestarts, empty the setQ and redefineR as the
newly computed greedy route; else
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4. The request is on the short side but no new phase starts. Insert the request inQ redefine
H as the shortest tour that starts at the origin, visits all ofQ and returns.

THEOREM6.4. PQR is7/4-competitive, and the ratio is tight.

PROOF. We show that PQR is 7/4 competitive. Suppose that the last request is presented
at timet . Without loss of generality, we suppose that at timet the long side is the right
side, and the short side is the left side. Moreover, let−Y andX be, respectively, the
leftmost and the rightmost requestever presented. When the timet is clear from the
context we abbreviatepPQR(t) with p.

There are four cases, depending on which rule the algorithm applies. The proof is by
induction on the number of requests, so we may assume that if this last request never
arrived, PQR would be 7/4 competitive. The induction hypothesis trivially holds in case
of none or one request.

1. In the first case, the new request is on the currently followed routeR. ZPQR does not
increase, and hence PQR remains 7/4 competitive.

2. In Case 2 the new request is on the right of the origin, at positionX. After its
presentation,X is the rightmost unserved request andp ≤ X, since otherwise we
would have had a Case 1 situation. Let−x be the leftmost unserved request. If there
is no unserved request left of 0, we set−x = 0. Two cases are distinguished:
• In the first case−x < p. Since PQR follows the newly computed route starting

at timet from p, we have thatZPQR ≤ t + 2x + 2X. For the optimal algorithm
Z∗ ≥ t + X since the new request inX cannot be served before timet , and the
algorithm must end the tour at the origin. We also haveZ∗ ≥ 2x+ 2X . Moreover,
x ≤ X since either the current request inX or a previous request on the right of
the origin has started a new phase. We then conclude:

ZPQR

Z∗
≤ t + 2x + 2X

Z∗
= t + X

Z∗
+ 2x + X

Z∗
≤ 1+ 2x + X

2x + 2X ≤
7

4
.

• In the second casep ≤ −x. The time needed by PQR to serve all the requests is
thenZPQR≤ t +|p|+2X. As before we haveZ∗ ≥ t + X. Moreover, the position
p of PQR implies that there must have been a request at distance at least|p| left
from the origin, i.e.,Y ≥ |p|. Obviously,Z∗ ≥ 2Y + 2X. This implies that

ZPQR

Z∗
≤ t + |p| + 2X

Z∗
= t + X

Z∗
+ |p| + X

Z∗
≤ 1+ |p| + X

2Y + 2X
≤ 3

2
.

3. In this case the new request is on the left of the origin at position−x. The new request
is further from the origin than any other unserved request. LetX be the rightmost
unserved request. Clearly,X < x. If there is no unserved request to the right of 0, we
setX = 0. At timet , p > −x, since otherwise we would have had a Case 1 situation.
We distinguish two cases.
• In the first case we have−x < p < X. Since PQR recomputes an optimal greedy

route at timet , we haveZPQR≤ t+2x+2X. For the optimal algorithmZ∗ ≥ t+x
since the new request at position−x cannot be served before timet . Moreover,
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Z∗ ≥ 2x + 2X. We then obtain that

ZPQR

Z∗
≤ t + 2x + 2X

Z∗
= t + x

Z∗
+ x + 2X

Z∗
≤ 1+ x + 2X

2x + 2X
≤ 7

4
.

• In the second case we have thatp ≥ X. The time needed by PQR to serve all the
requests and return to the origin isZPQR ≤ t + |p| + 2x, with |p| ≤ X . For the
optimal solution we haveZ∗ ≥ t + x andZ∗ ≥ 2x + 2X . We conclude that

ZPQR

Z∗
≤ t + |p| + 2x

Z∗
= t + x

Z∗
+ x + |p|

Z∗
≤ 1+ x + X

2x + 2X ≤
3

2
.

4. In this case the request inserted intoQ is further from the origin than any of the
other unserved requests on the short side, but closer to the origin than the furthest
unserved request on the long side. Let−x′′ be the position of this request, let−x′ and
X′ be the leftmost and the rightmost unserved requests when the greedy tour was last
computed, and let−x andX be the leftmost and rightmost unserved requests when
the current phase started and so the current long side was declared to be such. Note
that we must havex′′, x′, X′ ≤ X. We consider two subcases:
• In the optimal solutionX′ is served before−x′′. Let t ′ be the time at which the

request inX′ was presented, i.e., the time at which the current greedy route was
computed. For the optimal solution we getZ∗ ≥ t ′ + X′ + 2x′′.

Another two subcases are distinguished, depending onpPQR(t ′), i.e., the position
of PQR at timet ′, relative to the intervalI = [−x′, X′]:
— PQR was insideI at timet ′. Notice that, at timet , PQR is still working on the

greedy tour that was computed last since the request att did not cause a new
phase. Therefore,ZPQR≤ t ′ + 2x′ + 2X′ + 2x′′, while Z∗ ≥ 2x′ + 2X. In this
case the ratio is

ZPQR

Z∗
≤ t ′ + 2x′ + 2X′ + 2x′′

Z∗
= t ′ + X′ + 2x′′

Z∗
+ 2x′ + X′

Z∗

≤ 1+ 2x′ + X′

2x′ + 2X
≤ 7

4
,

sincex′, X′ ≤ X.
— PQR was outsideI at timet ′. Observe that it could not be to the right ofX′,

otherwise a Case 1 situation would have occurred. Therefore, it was necessarily
to the left of−x′. This implies thatZPQR ≤ t ′ + |pPQR(t ′)| + 2X′ + 2x′′.
Obviously,|pPQR(t ′)| ≤ Y, andZ∗ ≥ 2Y + 2X. Therefore,

ZPQR

Z∗
≤ t ′ + |pPQR(t ′)| + 2X′ + 2x′′

Z∗
= t ′ + X′ + 2x′′

Z∗
+ |p

PQR(t ′)| + X′

Z∗

≤ 1+ |p
PQR(t ′)| + X′

2Y + 2X
≤ 3

2
.

• In the optimal solution−x′′ is served beforeX′. Then for the optimal solution we
haveZ∗ ≥ t + x′′ + 2X′. Again, two subcases:
— PQR is to the right of−x′ at timet (it is certainly to the left ofX′). We consider

two more subcases:
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* x′ < x′′. ThenZPQR≤ t + 2x′ + 2X′ + 2x′′ while Z∗ ≥ 2x′′ + 2X. In this
case the ratio is

ZPQR

Z∗
≤ t + 2x′ + 2X′ + 2x′′

Z∗
= t + 2X′ + x′′

Z∗
+ 2x′ + x′′

Z∗

≤ 1+ 2x′ + x′′

2x′′ + 2X
≤ 7

4
.

* x′ ≥ x′′. Since the request in−x′′ is not visited on the current route, PQR has
already visitedx′ at timet andp > −x′′. ThenZPQR< t + x′′ + 2X′ + 2x′′

whereasZ∗ ≥ 2x′′ + 2X. The ratio is

ZPQR

Z∗
≤ t + x′′ + 2X′ + 2x′′

Z∗
= t + 2X′ + x′′

Z∗
+ 2x′′

Z∗

≤ 1+ 2x′′

2x′′ + 2X
≤ 3

2
,

sincex′′ ≤ X.
— PQR is to the left of−x′ at timet . p cannot be to the left of−x′′ because in that

case−x′′ would be on the current route, and therefore we have thatx′ < x′′

and p is inside the interval [−x′′,−x′]. Thus, ZPQR ≤ t + x′′ + 2X′ + 2x′′.
SinceZ∗ ≥ t + x′′ + 2X′ andZ∗ ≥ 2x′′ + 2X we have

ZPQR

Z∗
≤ t + x′′ + 2X′ + 2x′′

Z∗
= t + 2X′ + x′′

Z∗
+ 2x′′

Z∗
≤ 3

2
,

sincex′′ ≤ X.

That the bound on the competitive ratio of 7/4 is asymptotically tight for PQR is
proved by the following example. At time 1 requests are presented in both+1 and−1.
PQR is at the origin until time 1, when it starts a greedy tour that without loss of generality
serves+1 at time 2,−1 at time 4 and returns at the origin at time 5. However, at time
3, when PQR crosses the origin, a new request is presented at position 1+ ε. This new
request starts a new phase since it is the furthest request not yet served. Then a new
greedy route is computed that starts from the origin at time 3, serves the two requests in
−1 and 1+ ε and returns back at the origin at time 7+ 2ε. As for the optimal algorithm
it serves−1 at time 1,+1 at time 3, 1+ ε at time 3+ ε and returns at the origin at time
4+ 2ε. Makingε arbitrarily small, the ratio is arbitrarily close to 7/4.

7. Concluding Remarks. We have studied a classical routing problem from a new
point of view that is natural and realistic, given the great quantity of applications in
which travelling must be started before having complete information about the requests
to be served.

Vehicle routing problems have often been considered with time window constraints,
i.e., each request has to be served between a given release time and a given deadline. With
regard to release times observe that our lower and upper bounds also hold if we change
the problem by allowing a release time different from the time in which the request is
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presented. Then thei th request is specified by a triple〈ti , pi , ri 〉, and the relationti ≤ ri

holds for everyi , with the meaning that requests may be presented at any moment not
later than their release times. In that case our algorithms will simply ignore the requests
until their release times arrive, obtaining the same upper bounds.

It is obviously an open problem to close the remaining gaps between lower and upper
bounds: 5/2 versus 2 for N-OLTSP on general metric spaces in the classM, and for the
real line 7/3 versus 2 for N-OLTSP and 7/4 versus≈1.64 for H-OLTSP.

It would also be interesting to study other particular metric spaces (such as trees,
cycles, half-lines, etc.) to see if better bounds can be obtained (as we did for the real
line).

An interesting extension of OLTSP is tocrew schedulingin which more than one
server is used to serve the requests. In this case a 2.5-competitive algorithm can be
easily obtained for the Homing version of this on-line problem by the following strategy
working in phases: each time a new request is presented, all the servers return to the
origin and plan an optimal tour for covering all the unserved requests (and eventually
end to the origin). However, improvements are certainly possible.

Other possible extensions of the problems considered in this paper may take into
account different objective functions. For instance consider the sum (or the average)
over all the requests of the individual service times, defined as the time at which the
request is served, or of the individual service delays, defined as the interval between the
time at which the request is presented and the time at which the request is served.

A second class of problems that may be considered is provided by thedial-a-ride
scenario, in which each request consists of moving an item located at a certain position
in the metric space to a second position in the metric space. Examples of such problems
(with multiple servers) are a system of taxis in a city or a system of elevators. Notice
that in those cases one might wish to impose an extra constraint covering the capacity
of the server.

Acknowledgments. We are grateful to David Johnson for his extensive comments on
an earlier version of this paper.
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