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On Capital Investment?
Y. Azar?2 Y. Bartal? E. Feuersteifl,A. Fiat? S. Leonard? and A. Rostf

Abstract. We deal with the problem of making capital investments in machines for manufacturing a product.
Opportunities for investment occur over time, every such option consists of a capital cost for a new machine
and a resulting productivity gain, i.e., a lower production cost for one unit of product. The goal is that of
minimizing the total production costs and capital costs when future demand for the product being produced
and investment opportunities are unknown. This can be viewed as a generalization of the ski-rental problem
and related to the mortgage problem [3].

If all possible capital investments obey the rule that lower production costs require higher capital invest-
ments, then we present an algorithm with constant competitive ratio.

If new opportunities may be strictly superior to previous ones (in terms of both capital cost and production
cost), then we give an algorithm which@(min{1+ logC, 1+ loglogP, 1+ log M}) competitive, wher&
is the ratio between the highest and the lowest capital cBststhe ratio between the highest and the lowest
production costs, an¥ is the number of investment opportunities. We also present a lower bound on the
competitive ratio of any on-line algorithm for this case, whicfignin{log C, log log P/ log log logP, log M/
loglog M}). This shows that the competitive ratio of our algorithm is tight (up to constant factors) as a function
of C, and not far from the best achievable as a functioR @ndM.

Key Words. On-line algorithms, Competitive ratio, On-line financial problems.

1. Introduction. We consider the problem of manufacturing costs versus capital in-
vestment on production resources. A factory uses machines for producing some product.
The production of each unit of the product requires some fixed cost for using the ma-
chines (electricity, raw material, etc.). Over time opportunities for investment in new
machines, that would replace the old ones, become available. Such opportunities could
be the result of technological improvement, relocation to a cheaper market, or any other
investment that would replace the facilities of the factory and would lead to lower pro-
duction costs. We model all these opportunities as machines that can be bought, and then
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used to produce the product. The factory must decide whether to invest in buying new
machines to reduce production costs while neither future demand for the product nor
future investment opportunities are known.

Many financial problems require taking decisions without having knowledge, or hav-
ing only partial knowledge, of future opportunities. Competitive analysis of financial
problems has received increasing attention during recent years, for instance for currency
exchange problems [1], [2] or asset allocation [5].

The problem considered in this paper is a generalization of one of the basic on-line
problems, theski-rentalproblem due to Rudolph (see [4]), a model for the well-known
practical problem “rent or buy?” The ski-rental problem can be stated as follows: you do
not know in advance how many times you will go skiing; renting a pair of skis costs $
to purchase your own pair costp$Nhen do you buy? It is not hard to see that the best
deterministic competitive ratio is obtained if you buy when the total rental cost (thus far)
is equal to the cost of buying your own pair. Another problem considered in this model
in the past is the so-called mortgage problem [3], where a fluctuating mortgage rate and
associated refinancing charges lead to the question “refinance or not?”

While for the ski-rental problem the only possible capital expenditure is to purchase
a pair of skis, and then the “production” costs drop to zero, in the capital investment
problem there may be future capital expenditure options and the resulting productivity
gains are unknown. Unlike the mortgage problem, where the future demand is known
(the entire debt—which is a known fixed value—must be served), and capital investments
have a fixed cost (the cost of refinancing the mortgage), in the capital investment problem
future demand is unknown and capital investments may have arbitrary costs.

We consider two models for our problem, and call the first onectherex case
Here, we assume that to get a lower production cost, one must spend more as capital
expenditure. In this case we get a constant competitive ratio. This scenario is usually
true in manufacturing: purchasing a better machine costs more. However, sometimes
technological breakthroughs are achieved, after which both machine costs and production
costs are reduced. This matches our second modehaheonvexcase, which allows
both capital and production costs to drop.

In contrast to the convex case, for the nonconvex case we present a nonconstant lower
bound on the competitive ratio of any on-line deterministic algorithm for the problem.
We show that no deterministic algorithm can achieve a competitive ratio better than
Q(min{logC, loglog P/ logloglogP, log M/loglogM}), whereC is the ratio between
the highest and lowest capital cosksjs the ratio between the highest and the lowest
production costs, anl is the number of investment opportunities. We complement
this lower bound with an algorithm for general capital investment scenarios which is
O(min{1+logC, 1+ loglogP, 1+ log M}) competitive.

2. The On-Line Capital Investment Problem. Imagine a factory whose goal is to
produce units of some commaodity at low cost. From time to time, orders for units of the
commodity arrive, and at times new machines become available in the market. Every such
machine is characterized by psoductioncost and by itcapital cost The production

cost is the cost of producing one unit of commodity using this machine. The capital cost

is the capital investment necessary to buy the machine. We assume that once a machine
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becomes available, then it is available forever. We also assume that one can produce
an unlimited number of units with any machine. An algorithm for this problem has to
decide what machines to buy and when to do so, so as to minimize the total cost (capital
costs plus production costs).

More formally, an instance of the problem consists of a sequence of machines, and a
sequence of orders of demand. Machimes defined by the triplett(, ¢;, pi), wheret; is
a positive integer that indicates the discrete time at which the machine becomes available,
G is its capital cost, angb; is its production cost. Every order of demand is defined by
its arrival time. Without loss of generality we may assume thatj theorder appears at
discrete timg¢j = j, wherej is a positive integer. We also assume that at any integer time
t, the algorithm can buy any of the available machines (thosetwitht), and use this
machine for the production of units of commodity. When an order of demand is placed,
say at timet, the on-line algorithm has to produce one unit of commodity immediately.

(It can however buy a new maching presented at timg < t to produce the unit of
commodity.)

We say that machiney; dominatesnachinem; if both the production cost and the
capital cost ofn; are lower than those a@fi;. We call an instance of the probleronvex
if no machine presented dominates another. That is, an instance is convex if for any two
machined, j such thatp; < p; it holds thatc; > ¢;. To distinguish between the two
versions of the problem, the case in which convexity restrictions do not necessarily hold
will be called thenonconvexase.

We note that if all machines are available at the very beginning, then all machines
that are dominated by others can be removed. Thus, whenever all machines are available
in advance, we are left with the convex setting. The nonconvex setting only makes sense
if machines appear over time and it is possible that a better machine (in terms of both
capital cost and production cost criteria) will appear later.

2.1. Performance Measures We measure the performance of an on-line algorithm for
this problem by its competitive ratio [6]. Let be a sequence of offers of machines and
orders of demand for units of the commodity to be produced.

We denote by ON{) the cost of the on-line algorithm ON for the problem over the
sequence, and with OPT§) the cost of aroptimal off-line algorithm that knows the
entire sequence in advance. We parametrize the sequences by the ratio between the
cost of the most expensive and cheapest machines (deno@Y by the ratio between
the highest and the lowest production cost (denoteé}yand by the total number of
machines presented during the sequence (denotéd)bpenote by> (C,P,M) the set
of sequences that obey the above restrictions.

The competitive ratio of an algorithm may be a function of the above parameters. An
on-line algorithm ON iso(C,P,M)-competitive for a seE(C,P,M) of sequences if

ON(o)
su < p(C, P, M).
sesicpw OPT(@) =7

3. Upper Bound for the Convex Case. In this section we study the convex case in
which a machine with a lower production cost cannot be cheaper than a machine with
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a higher production cost. We present an on-line algorithm for the convex case with
competitive ratio 4+ 2./2 = 6.83.

3.1. The Algorithm The algorithm is defined as follows: before producing the first
unit the algorithm buys the machimg that minimizesp; + ¢ amongst all machines
available at the beginning of the sequence. It then produces the first unit of commaodity.
The initial costp; + ¢; is considered @roductioncost.

Leta andp be positive constants satisfying2 < 1 and Y« + 28 < 1. In particular
we chooser = 1+ /2 andg = 1/(2+ v/2).

Before producing any subsequent unit of commaodity the algorithm considers buying a
new machine. However, it is not always allowed to buy a new machine. When an amount
of c is spent as capital cost to buy a machine, it is not allowed to buy another machine
until the algorithm spends at legét ¢ on production.

When it is allowed to buy a machine, the algorithm buys the maaminghat mini-
mizes production cogt; amongst all machines of capital cost at m@dimes the total
production cost incurred since the beginning of the sequence. If no such machine is
available, the algorithm does not buy a new machine.

3.2. Analysis We prove that the competitive ratio of the above algorithm-isd +
1/ =4+ 22.

We use the following notation. Fix the sequerceédenote by ON = ON+ ONP the
total cost of the algorithm that is equal to the sum of the total capital coSta@b the
total production cost ON Let p' be the production costincurred by the on-line algorithm
to produce unit number. Let ON’ be the production cost incurred by the algorithm to
produce the first units, i.e., ON = Zle p'. Let OPT, be the optimal total (capital and
production) cost to produce the fitainits. We start by proving a bound on the total cost
spent on purchasing machines, in terms of the total production cost incurred.

LEMMA 3.1. The total capital cosONC incurred by the on-line algorithm is at most
(a + 1/pB) of its total production cosDNP.

PROOF The capital cost of the last machine bought is at motimes the total pro-
duction cost. For every other machine, the production cost in the interval between the
time this machine has been bought, and the time the next machine is bought, ist least
times the capital cost of the machine. These intervals do not overlap, and thus the total
capital cost of all the machines except the last one sums to at mggines the total
production cost. O

We now relate the production cost of the on-line algorithm to the total cost of the
off-line algorithm.

LEMMA 3.2. Atany time t the production co&IN] of the on-line algorithm is at most
the total cosOPT; of the off-line algorithm

PROOFE  We prove the claim by induction on the number of units produced.
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Fort = 1 the claim holds since the on-line production cost of the first unit (defined
as the sum of the capital and the production costs of the first machine bought) is the
minimum possible expense to produce the first unit. Therefor% OPT;.

Consider unit fort > 1, and assume the claim holds for any unit t. Letm be
the machine used by the on-line algorithm to producetuhi¢tm’ be the machine used
by the optimal off-line solution to produce unitlet p’ be its production cost, and let
be its capital cost.

If p > p', then we have OR= ON}_, + p' < OPT,_; + p' < OPT,.

If p' < pt, then the on-line algorithm did not buy machimébefore producing unit
t. Let the capital cost of the last machine bought by the on-line algorithmr(i)dec,
and assume it was bought just before tinitas produced. Since we consider the convex
case we have that’ < p' = p'impliesc’ > €.

As we assume that the on-line algorithm did not Iniyjust before producing untt
one of the following holds:

1. The capital cost of machima’ was too high, i.e., less thail/«a)c’ was spent on
production since the start of the sequence.

2. It was not allowed to buy any machine at this time: less tart was spent on
production since machima was bought, and until unit number- 1 is produced.

We consider each of these cases:

1. We have that ON= ON? , 4+ p' <2-ON/ ; < (2/a)C’ < OPT,.
2. We have that

t—1 t—1
ON!=ON? , +> p' +p <ON  +2% p' <ON?, +28-C.

i=t i=t

We now distinguish between two subcases, depending on whether machise
available before unit is produced. The first subcase is that machitidecomes
available only after unit is produced. In this case we have

ONf <ONP , +28-C<OPT_1+2B-C < OPT_1+C < OPTr_; + ¢ < OPT,.

The second subcase is when machimés available before unit numbegis produced.

We have that its capital cost;, is higher thanx - ONtPfl, otherwise the on-line

algorithm would have bought this (or a better) machine at finvehich contradicts
p' > p'. Therefore we have
ON} < ONP , +28-C<ON?  +28-C
< (1/a)c +28-¢ = (1/a + 28)c < OPT;. O

Combining Lemmas 3.1 and 3.2 we get the following theorem.

THEOREM3.1. The algorithm presented above for the convex case of the on-line capital
investment problem achieves a competitive ratit #fa + 1/8.
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4. Lower Bound for the Nonconvex Case. In contrast to the constant upper bound
proved in the previous section, in this section we prove a lower bound on the competitive
ratio of any deterministic on-line algorithm for the nonconvex case. The lower bound
that we prove i€2(min{logC, log log P/ log loglogP, log M/ loglogM}), whereC is
the ratio between the highest and the lowest capital césis,the ratio between the
highest and the lowest production costs, &hds the number of presented machines.

We now describe the instance of the problem on which the lower bound is achieved.
Let C be some large power of 2, at least2 32. The capital costs of all the machines
in the instance are powers of 2 between 2 @nénd their production costs will be of
the form 1/ log C, for some positive integes. We assign develbetween 1 and 10§
to each machine; machines of levédave capital cost; = 2'.

We divide the time into phases for any level between 1 an€ldfja phase of level
i ends at timd, then a new phase of leviebtarts at time¢ + 1. We assume that at time
0 phases of all levels end. Then at time 1, a phase of each level starts.

A phase of level ends when one of the following occurs:

1. The on-line algorithm buys a machine of level

2. The on-line algorithm has reached a global cost (production and capital) in the phase
greater or equal tG /2)c;.

3. A phase of level higher tharends.

If more than one phase ends at the same time in Case 1 or in Case 2, we say that
the phase of highest level among them ends in Case 1 or Case 2 and consider the other,
lower-level phases, as ending in Case 3.

The sequence is produced by the adversary as follows: at every integral time unit
t > 1 there is a request for the production of one unit of commaodity. The presentation
of machines follows the rule that at the beginning of a phase of lex®machine of
leveli is presented. To define the production costs of the machines the following rule
is applied: Letng(i) =i!/klfori =1,...,logC,k=1,...,logC. When a phase of
leveli with an associated machine of production cpginds in Case 1 or Case 2 (and
thus new phases of levelJs< i start), a set of machines are presented, one for each
level j =1,...,i. The production cost of the appropriate machine of lgvisldefined

to be
p

(109 C) Y jeey M(j)
Recall that if a phase ends in Case 1 at tirsice the on-line algorithm buys a machine
at timet, then at time + 1 a new machine of the same level is presented, and hence a
new phase of that level starts.

At the beginning we act as if at tien0 a phase of level = logC, with a machine
having production cosp = 1/logC, ended, so that phases of all levels start at time 1
when a first set of machines of all levels are presented, with capital and production costs
as defined above.

The sequence will be over with the end of the phase of leveClagsociated with
the machine of capital co§& presented at time 1. The sequence is built so that there is
only one machine of capital coStpresented in the whole sequence, and that machine’s
production cost is at most/1og C the production cost of any other machine presented
in the sequence.

P
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We define a relation of inclusion between phases. A phase ofil@ealtains all the
phases of leve] < i that start simultaneously with that phase, or start during that phase.
Note that no phase of levgl> i starts during a phase of levielWe call a phasactive
if it is not ended yet. At every point in time one phase is active at every level.

We call a phase that ends in Case 1 or Casedhaplete phasand a phase that ends
in Case 3 aincomplete phasdf a phase of level is complete, then thie— 1 phases at
lower levels that end as a consequence of the end of thisil@llse are incomplete.

LEMMA 4.1. At mosti machines of levek 1 are presented during a phase of level i
fori > 2.

PrOOF Fori > 2, a new machine of levél— 1 is presented during the phase of level
i only when the on-line algorithm buys the previous machine of level, or when its
cost during the phase of level- 1 reacheg(i — 1)/2)¢; — 1. In any case, the on-line
algorithm’s cost for the phase of level- 1 is at leastt; — 1. Hence, the maximum
numberx of phases of levdl — 1 is restricted to beingg_1 < (i/2)¢;, which implies
X<i. O

The production costs defined above were chosen so as to obey the property stated in
the following lemma.

LEmMMA 4.2. The machine of leveli presented during a phase P ofleveli has production
cost less than or equal tt/ log C times the production cost of

1. any machine presented during a phase that ends before the starting of phase P
2. any machine of level k i presented during phase.P

PrOOF  WEe first prove the second part of the claim, by inductiom.affe have to prove
that every machine of levéd < i presented during the phase of levdias production
cost at leasty; - logC, where p; is the production cost of the machine of levein
question.

For the basis of the induction, we note that foe 1 the claim is trivially true, as
there are no machines of levdds< i. We now prove the claim fdr > 1, assuming that
it holds fori — 1. Consider the machines of level 1 presented during the phase of
leveli. First note that by Lemma 4.1 there are at mastch machines. The first machine
is presented together with the machine of ldvelet p be the production cost of the
machine associated with the phases that end just before these machines are presented.
Then the production cost of the machine of leivel 1 is

_ p
B (logC) Yicini-1

Pi—1

Now note that the next machine of levet 1 is presented when this phase of level1
ends (as no phase of higher level can end while the phase of lievattive). Therefore,
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the production cost of théth machine of level — 1 presented during the phase of level
iis
= p

(log C)K(ZL;ll neli—1)

Pi-1
That is, the production costs of the machines of Iévell are decreasing, with the last

machine presented during the phase of lewsing of production cost

/ p p
pi -1 Z N 1 - = i -
(logC) (Zicin(-1)  (JogC)Xies Mki)-1

= pi logC.

We conclude that all machines of level 1 presented during the phase of levélave
cost at least lo@ times the cost of the machine of leveh question. Using the induction
hypothesis, we also know that any machine presediteithg any of the phases of level

i — 1 has production cost at least I8gimes the production cost of the machine of level
i — 1 and hence at least lagjtimes the production cost of the machine of leieThis
concludes the proof of the second part.

We now prove the first part of the claim. We prove it by induction on time (i.e., unit of
commodity produced). That is, we claim that any phase that starts at iinassociated
with a machine of production cost less than or equal/ttmd C the production cost of
any machine presented during a phase that ended befort tmetimet = 1 (when the
sequence starts) the claim is obviously true, as there is no phase that ended previously.
Now consider a phase of levelthat starts at timé > 1. This phase starts due to the
end of a phase of some levgl> i; let the production cost of the machine associated
with this phase bgp. Then the production cost of the machine of levpresented at
is pi = p/(log C)Xk1™() Now note that any phase that ended before tinseeither a
phase that starts during the phase of Igvitlat just ended, or a phase that ended before
the phase of levej started. For phases of the first type, their production cost is higher
thanp, by the second part of the lemma. Thus, the claim holds with respect to those. As
to machines of the latter type, their production cost is higher thay the induction
hypothesis (as the phase of levektarted before timeé). Thus the claim holds with
respect to them as well. O

Consider a phase of level Let z be the cost incurred by the on-line algorittion
productionduring that phase. Lej be the cost of the on-line algorithm incurred during
the phase for capital costs to buy machines of leyels<i.LetO; =z + ;.

DerINITION.  Consider a phase of level Therestricted optimal cosbf this phase is

the optimal cost to produce all the units of commodity required to be produced during
the phase under the restriction that one can buy only machines of level not higher than
i, and under the assumption that the algorithm already possesses one machine when the
phase starts.

For a given phase of levelwe denote the restricted optimal cost of the phasé&by
When considering a sequence of phases of levee denote the respective restricted
optimal costs by a superscript, e.8\..
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By giving upper bounds on the value Af we give an upper bound on the cost of the
adversary to serve this portion of the sequence. Obviously, we are interested in an upper
bound onAygc. For Aggc, the restriction above is empty, and by adding the cost of the
cheapest machine available when the sequence starts, we get an upper bound on the cost
of the real adversary for the whole sequence.

First, we state two upper bounds 8n The first upper bound is derived from the case
where the optimal algorithm chooses to buy the machine of iepedsented when the
phase starts. The other one is derived from the case in which the optimal solution does
not buy this machine.

LEMMA 4.3. For any phase of level iA; < 2¢;.

PrOOF We consider the possible scenario in which the optimal solution buys the ma-
chine of level that is presented at the beginning of the phase as soon as it is presented.
The main argument of the proof is that the on-line algorithm may use this machine only
for the last unit of commodity produced in the phase, since by buying it the phase ends.
Therefore, any on-line algorithm produces with production cost higher than that of the
optimal solution, as all other machines available until the end of the phase have, by
Lemma 4.2, higher production costs by at least a logarithmic factor.

The adversary can first buy the machine of léyéhcurring a cost of; = 2', and
then produce the rest of the demand using this machine. The production cost of the
machine used is, with the possible exception of the last unit produced in the phase, at
most 1/ log C times the production cost of the machine used by the on-line algorithm.
The production of the last unit costs at mogtdg C since this is an upper bound on the
production cost of all machines. Then the optimal solution incurs a production cost of
at mostz; /logC + 1/logC.

However,
n 1 - logC L 1

logC = 2 @ logC
sincel < logC and the last unit of demand is produced by the on-line algorithm incurring
a cost of at most Alog C.

For logC > 4 we have

i
Zi<§Ci

A<+ Ag T
"= " "logC ' logC
((logC)/2)ci + (1/1ogC) 1
< G +
logC logC
NI
~ 77 2 "log?C ' logC
< 26. O

The second upper bound ok is derived from the case in which the adversary
chooses not to buy the machine of levelVe can give an upper bound on the restricted
optimal cost by summing up the costs of the lower level phases from which this phase is
composed. A phase of levie{complete or incomplete) is partitioned into a sequence of
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phases of leval — 1, whose number we indicate By The last one of those phases may
be incomplete, while the firg — 1 are complete. Thus, we get the following lemma.

LEMMA 4.4. Consider a phase of level Let Ajfl, j =1,...,5, be the restricted
optimal cost of the th subphase of level+ 1. Then A < ?:1 A

THEOREMA4.1. If an algorithm for the nonconvex on-line capital investment problem
is p-competitivethenp = Q(logC).

PrROOE We first observe that the (unique) phase of levelCogdeed ends, since all
production costs are positive and therefore the on-line production cost eventually reaches
((logC)/2)C (the phase can end earlier if the on-line algorithm buys the machine of
level logC).

We will now show that any on-line algorithm pays a global cost (over the sequence)
of at Ieast 5 log C times the cost of the adversary.

To prove that, we first prove a claim concerning a phase of any lewk focus
our attention on a specific phase of leveThe phase starts one unit of time after that
the previous phase of levelends. By definition, one machine for each leyek i
is presented at the beginning of the phase. Observe that during this phase the on-line
algorithm does not buy any machine of level higher thatince otherwise the phase
immediately ends.

We prove the following claim:

e O > ((i —1)/8)A for a complete phase;
e O > ((i —1)/8)A — ¢ for an incomplete phase.

We prove the claim for each of the three cases in which a phase ends. Recall that in
Cases 1 and 2 the phase is complete and the first part of the claim must be proved, while
in Case 3 the phase is incomplete and the second part of the claim must be proved. We
prove the claim by induction on The claim obviously holds for levél= 1. To prove
the claim for a level + 1, we assume it holds for levelts< i.

1. In Case 1 the phase ends when the on-line algorithm buys the machine ofielel
Thus, O;,; is obtained by the sum (ID’ forl < j < 5.3, for thes,; phases of
leveli contained in the phase of |E\/Ie|+— 1, plus the capital cos}, ; for buying the
machine of level + 1 that ends the phase. Therefore

S+1 S+1

O = ZO +Q+1>Z—AJ ——+Cl+1

i—1 3
> A|+1+4C|+1_ —A|+1
The firstinequality stems by applying the inductive hypothesis. The second inequality
is obtained from Lemma 4.4 and the relatign= 2¢; _;. Finally, the last inequality
follows from Lemma 4.3.
2. In Case 2 the global cost of the on-line algorithm reaches the véldel)/2)ci 1,
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fori > 1. Then, applying Lemma 4.3, it follows that

i+1 i
Gij1> Tci+l > éAiJrL

3. In Case 3 the phase ends because a phase of a higher level ends in Case 1 or Case 2.
The costO, ,; of the incomplete phase is obtained by the sur@ibfor 1<j<s.1,
for thes 1 phases of level contained in the phase of leviek- 1. Note that the last
phase of level is also incomplete. The claim is proved as follows:

S+1 S+1

SR
Oyt = Zo' —N—E

i—1 Ci Ci G
> g Atz sA'“‘%l'
The firstequality indicates the on-line global costin the phase, while the firstinequality
is derived by applying the inductive hypothesis. The second inequality is obtained
from Lemma 4.4 and the relation between the capital costs of machines af fetel
andi, while the final inequality is derived from Lemma 4.3.

Since the unique phase of level I6gs a complete phase and its completion ends the
sequence, we have that ONGryc > ((logC — 1)/8) Aiggc. The cost of the optimal
adversary is at mosy,gc + 2, where the additional cost of 2 is the cost to buy a first
machine, as the costy are based on the assumption that a machine is available to the
algorithm when the sequence starts. We get that=©ONlogC)/16)(OPT — 2). Since
the phase of level lo§ ends either when the on-line algorithm buys the machine of level
log C or when its total cost reachédog C)/2)C, we have that ON> C > (logC)/8.

We get ON> ((logC)/16)OPT— (logC)/16- 2 and ON> ((logC)/32)OPT. O

The following corollary states the lower bound as a function of the fatimetween
the highest and the lowest production costs, and of the maximum number of presented
machinedM.

THEOREM4.2. If an algorithm for the nonconvex on-line capital investment problem
is p-competitivethenp = Q(loglogP/logloglogP) andp = 2(log M/ loglogM).

PrROOF The claim follows by observing that in the sequence forSgogC) lower
bound, the ratio between the maximum and the minimum production cd2t is
(IogC)(Z[ch 1nk<'°9C))—(IogC)O“"gC)’ Hence, it follows thaf2 (log C) = Q (log log P/
log log logP). Similarly, the number of machines presentedlis< 3,%¢ ny(logC) =

O((logC)!), it therefore follows thaf2 (logC) = Q2 (log M/ loglogM). |

5. Upper Bound for the Nonconvex Case. In this section we present an algorithm
for the general (nonconvex) case of the problem. This algorithm achieves a competitive
ratio of O(min{1+ logC, 1+ loglog P, 1+ log M}).
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5.1. The Algorithm Given any new machine with production cqst, and capital
cost ¢, our algorithm first rounds these costs up to the nearest power of 2, i.e., if
2171 < ¢ < 2], thenitsets; =21, and if 21 < p < 2% then it setgy = 2.

The algorithm is defined as follows. Before producing the first unit buy the machine
m; that minimizesp; 4+ ¢; amongst all machines available at the beginning. Then produce
the first unit of commodity. The initial cogt + ¢; is considered aroductioncost.

Before producing any subsequent unit, order all available machines by increasing
production cost and (internally) increasing capital cost. Number the machines by index
i, and letp;, ¢ be the production costs and capital costs, respectively. Fomalk i1,
and if p = piy1, thenc < ¢y 1. Buy the machine with leastthat satisfies the two
following conditions.

e Its production cosp; is smaller than the production cost of the current machine.

e A production cost of at least has been spent since the last time a machine with
capital cost; has been bought (or since the beginning of the run, if no such machine
has been previously bought).

5.2. Analysis We prove that the above algorithm achieves a competitive ratio of
O(min{1 + logC, 1 + loglogP, 1 + log M}). In the following analysis we assume
that all capital and production costs are indeed powers of 2, as rounded by the on-line
algorithm. Clearly, an adversary that uses this modified sequence incurs a cost of at most
twice the cost incurred by the real adversary that uses the real sequence.

Denote by ON = ON + ONP the total cost of the algorithm which is equal to the
sum of the total capital cost ONand of the total production cost @Nwhich, by our
definitions, includes the capital cost of the first machine bought).

LEMMA 5.1. The total capital cost ONis at most Glog C) times the total production
cost ON.

PrOOF  For a givenj, consider all the machines of codttdat are bought. A machine

of cost 2 can be bought only after an amount dft2as been spent on production since

the last time a machine of the same cost has been bought (or since the beginning of the
sequence, if no such machine was previously bought). It follows that, foy,ahg total

cost of the algorithm for buying machines of coéti® at most ON. Since there are at

most 1+ [log C7 different costs for the machines, O O(ONP . (1+1logC)). O

LEMMA 5.2. The total capital cost ONis at most 1 + log M’) times the total pro-
duction cost OR, where M is the total number of machines bought

ProOF Let 2 be the cost of the cheapest machine, anddie2the cost of the most
expensive machine such thdt 2 ONP. All machines bought by the algorithm have
costs between'zind X. For anyj,| < j <k, let b; be the number of machines of cost

21 bought by the algorithm. An upper bound on the capital cost spent by the algorithm is
the maximum ofZ = Z}‘zl b;2! as a function of the variabldg, j =1, ..., k, subject

to constrant®; 21 < ONP, andzf:, bj = M.
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We relax the above problem by allowing the varialileto assume noninteger values.
Clearly, the soution to this relaxed problem is also an upper bound &nidote by,

j =1,...,k,thevariables of the relaxed problem. For the optimal solution of the relaxed
problem, there are nb andh’ such thal < h < h’ <k, b, > 0 andbf, < ONP/2",
Otherwise, there would have been a solution with a higher value of the objective function
Z ofthe relaxed problem, achieved by redudifj@nd increasingy, by the same amount,
until eitherb!, = 0 orbf, = ONP/2",

From the above observation we derive an upper bound on the maximum of the objec-
tive function (and thus an upper bound on ®Nf ONP/2¢ > M’, then the maximum is
achieved by settinig, = M’ andb; = Oforl < j < k—1.Inthis cas{jle bj2) < ONP,
and the lemma clearly holds.

If ONP/2X < M/, let h* be the maximum integer such th@}‘zh*(ONp/Zj) > M.

An upper bound on the maximum of the objective function is obtained by assigning
bl = ONP/2i, j =h*+1,.... kb, =M — Y. bl < ON/2", andb! = 0, for
j =1,...,h* — 1. The upper bound on the value of the objective function is

bezl <Z|or2k il — be2K<ONp (k —h* +1).
j=h* =h*

Itremains to show tha—h*+1 = O(1+log M"). By definition ofh*, 1 .., 21
= Z}‘ het1 D) ZJ 1 (ONP/2)) < M. Therefore, we geZ] _- 271l < 3M’and
thus (2<-"+1 — 1) < 3M’/bL. Since ON > 2, it follows thatb} > 1, and we obtain
2k=h"+1 _ 1 < 3M’. SinceM’ > 1, we obtairk — h* + 1 = O(ljL log M"). O

COROLLARY 5.1. The total capital cost ONis at most @1 + log M) times the total
production cost ON

COROLLARY 5.2. The total capital cost ONis at most @1+ log log P) times the total
production cost ORNl

PrROOF The algorithm buys a machine only if the production cost decreases. Since all
production costs are powers of 2, the algorithm buys at i®g&t+ log P) machinesd

LEMMA 5.3. At any time the total production cost ®Nf the on-line algorithm is at
most twice the total cost of the off-line algorithm

PrOOF Let p! be the production cost incurred by the on-line algorithm to produce unit
numbert. Let ON’ be the production cost incurred by the algorithm to produce the first
t units, i.e., ON = Z}:l p'. Let OPT, be the lowest (optimal) cost to produce the first
t units.

We prove by induction ohthat ON’ < 2. OPT,.

To produce the first unit the on-line algorithm buys the machine that minimizes the
sum of productions and capital costs. This is the minimum possible cost to produce the
first unit. Thus, ON < OPT;.
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Consider unit for t > 1, and assume that the claim holds for every unit nuniper
{ < t. Letm be the machine used by ON to produce tinltet M’ be the machine used
by OPT to produce untt, let p’ be its production cost, and letbe its capital cost.

If p* < p/, then we have

ON{ =ON{ ; 4+ p' <2:OPT_1+ p' <2-OPT 1+ p <2:OPT.

We now consider the case in whigh < p'. It follows that the on-line algorithm did
not buy machinen’ although it was available before units produced. If this happens
one of the following holds:

1. The production cost incurred by the on-line algorithm by time1 is less thart'.
On the other hand, the optimal off-line algorithm buys machmeincurring a cost
of ¢'. It follows that

ONf =ON , + p' <2-ON} ; <2¢ < 2-OPT,.

2. Some machine of cost was previously bought by the on-line algorithm, but the
production cost incurred by the algorithm since then is less¢ha@ssume that such
a machine was bought just before uhivas produced. As unitis produced with
production cost higher thap’, we can conclude that' was not available before
unitt was produced. Thusy’ was bought by the off-line algorithm after uitvas
produced. On the other hand, the on-line production cost since the production of unit
tis less thart’. Therefore, we have

t—1 -1
ONf=ON , +> p'+p <ON’,+2> p <2.OPT_; +2¢' <2-OPT.

i=t

i=t

O

We conclude with the following theorem, whose proof is straightforward from the
previous lemmata.

THEOREMbS.1. The competitive ratio of the on-line capital investment algorithm de-
scribed above is @nin{1+ logC, 1+ loglogP, 1 + log M}).
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