
Algorithmica (1999) 25: 22–36 Algorithmica
© 1999 Springer-Verlag New York Inc.

On Capital Investment1

Y. Azar,2 Y. Bartal,3 E. Feuerstein,4 A. Fiat,2 S. Leonardi,5 and A. Ros´en6

Abstract. We deal with the problem of making capital investments in machines for manufacturing a product.
Opportunities for investment occur over time, every such option consists of a capital cost for a new machine
and a resulting productivity gain, i.e., a lower production cost for one unit of product. The goal is that of
minimizing the total production costs and capital costs when future demand for the product being produced
and investment opportunities are unknown. This can be viewed as a generalization of the ski-rental problem
and related to the mortgage problem [3].

If all possible capital investments obey the rule that lower production costs require higher capital invest-
ments, then we present an algorithm with constant competitive ratio.

If new opportunities may be strictly superior to previous ones (in terms of both capital cost and production
cost), then we give an algorithm which isO(min{1+ logC,1+ log log P,1+ log M}) competitive, whereC
is the ratio between the highest and the lowest capital costs,P is the ratio between the highest and the lowest
production costs, andM is the number of investment opportunities. We also present a lower bound on the
competitive ratio of any on-line algorithm for this case, which isÄ(min{logC, log log P/ log log logP, log M/
log logM}). This shows that the competitive ratio of our algorithm is tight (up to constant factors) as a function
of C, and not far from the best achievable as a function ofP andM .

Key Words. On-line algorithms, Competitive ratio, On-line financial problems.

1. Introduction. We consider the problem of manufacturing costs versus capital in-
vestment on production resources. A factory uses machines for producing some product.
The production of each unit of the product requires some fixed cost for using the ma-
chines (electricity, raw material, etc.). Over time opportunities for investment in new
machines, that would replace the old ones, become available. Such opportunities could
be the result of technological improvement, relocation to a cheaper market, or any other
investment that would replace the facilities of the factory and would lead to lower pro-
duction costs. We model all these opportunities as machines that can be bought, and then

1 A preliminary version of this paper appeared in theProceedings of the23rd International Colloquium on
Automata, Languages and Programming(ICALP 96), Lecture Notes in Computer Science 1099, Springer-
Verlag, Berlin, 1996, pp. 429–441.
2 Department of Computer Science, Tel Aviv University, Ramat Aviv, Israel.{azar,fiat}@math.tau.ac.il.
Research supported in part by a grant from the Israel Academy of Sciences.
3 International Computer Science Institute (ICSI), Berkeley, CA 94704-1198, USA. yairb@icsi.berkeley.edu.
Research supported in part by the Rothschild Postdoctoral fellowship.
4 Departemento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Buenos Aires, & Instituto de Ciencias, Universidad de General Sarmiento, General Sarmiento, Argentina.
efeuerst@dc.uba.ar. Research supported in part by EEC Project KIT-DYNDATA.
5 Dipartimento di Informatica Sistemistica, Universit`a di Roma “La Sapienza”, Rome, Italy.
leon@dis.uniroma1.it. Research supported in part by EU Esprit Long Term Research Project 40% “Algo-
ritmi, Modelli di Calcolo e Strutture Informative.”
6 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada. adiro@cs.toronto.edu.

Received February 6, 1997; revised November 17, 1997. Communicated by M.-Y. Kao, A. S. Kyle, and P.
Lakner.

On Capital Investment 23

used to produce the product. The factory must decide whether to invest in buying new
machines to reduce production costs while neither future demand for the product nor
future investment opportunities are known.

Many financial problems require taking decisions without having knowledge, or hav-
ing only partial knowledge, of future opportunities. Competitive analysis of financial
problems has received increasing attention during recent years, for instance for currency
exchange problems [1], [2] or asset allocation [5].

The problem considered in this paper is a generalization of one of the basic on-line
problems, theski-rentalproblem due to Rudolph (see [4]), a model for the well-known
practical problem “rent or buy?” The ski-rental problem can be stated as follows: you do
not know in advance how many times you will go skiing; renting a pair of skis costs $r ;
to purchase your own pair costs $p. When do you buy? It is not hard to see that the best
deterministic competitive ratio is obtained if you buy when the total rental cost (thus far)
is equal to the cost of buying your own pair. Another problem considered in this model
in the past is the so-called mortgage problem [3], where a fluctuating mortgage rate and
associated refinancing charges lead to the question “refinance or not?”

While for the ski-rental problem the only possible capital expenditure is to purchase
a pair of skis, and then the “production” costs drop to zero, in the capital investment
problem there may be future capital expenditure options and the resulting productivity
gains are unknown. Unlike the mortgage problem, where the future demand is known
(the entire debt—which is a known fixed value—must be served), and capital investments
have a fixed cost (the cost of refinancing the mortgage), in the capital investment problem
future demand is unknown and capital investments may have arbitrary costs.

We consider two models for our problem, and call the first one theconvex case.
Here, we assume that to get a lower production cost, one must spend more as capital
expenditure. In this case we get a constant competitive ratio. This scenario is usually
true in manufacturing: purchasing a better machine costs more. However, sometimes
technological breakthroughs are achieved, after which both machine costs and production
costs are reduced. This matches our second model, thenonconvexcase, which allows
both capital and production costs to drop.

In contrast to the convex case, for the nonconvex case we present a nonconstant lower
bound on the competitive ratio of any on-line deterministic algorithm for the problem.
We show that no deterministic algorithm can achieve a competitive ratio better than
Ä(min{logC, log log P/ log log logP, log M/ log logM}), whereC is the ratio between
the highest and lowest capital costs,P is the ratio between the highest and the lowest
production costs, andM is the number of investment opportunities. We complement
this lower bound with an algorithm for general capital investment scenarios which is
O(min{1+ logC,1+ log log P,1+ log M}) competitive.

2. The On-Line Capital Investment Problem. Imagine a factory whose goal is to
produce units of some commodity at low cost. From time to time, orders for units of the
commodity arrive, and at times new machines become available in the market. Every such
machine is characterized by itsproductioncost and by itscapital cost. The production
cost is the cost of producing one unit of commodity using this machine. The capital cost
is the capital investment necessary to buy the machine. We assume that once a machine

24 Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Ros´en

becomes available, then it is available forever. We also assume that one can produce
an unlimited number of units with any machine. An algorithm for this problem has to
decide what machines to buy and when to do so, so as to minimize the total cost (capital
costs plus production costs).

More formally, an instance of the problem consists of a sequence of machines, and a
sequence of orders of demand. Machinemi is defined by the triplet (ti , ci , pi), whereti is
a positive integer that indicates the discrete time at which the machine becomes available,
ci is its capital cost, andpi is its production cost. Every order of demand is defined by
its arrival time. Without loss of generality we may assume that thej th order appears at
discrete timetj = j , wherej is a positive integer. We also assume that at any integer time
t , the algorithm can buy any of the available machines (those withti ≤ t), and use this
machine for the production of units of commodity. When an order of demand is placed,
say at timet , the on-line algorithm has to produce one unit of commodity immediately.
(It can however buy a new machinemi presented at timeti ≤ t to produce the unit of
commodity.)

We say that machinemi dominatesmachinemj if both the production cost and the
capital cost ofmi are lower than those ofmj . We call an instance of the problemconvex
if no machine presented dominates another. That is, an instance is convex if for any two
machinesi , j such thatpi < pj it holds thatci ≥ cj . To distinguish between the two
versions of the problem, the case in which convexity restrictions do not necessarily hold
will be called thenonconvexcase.

We note that if all machines are available at the very beginning, then all machines
that are dominated by others can be removed. Thus, whenever all machines are available
in advance, we are left with the convex setting. The nonconvex setting only makes sense
if machines appear over time and it is possible that a better machine (in terms of both
capital cost and production cost criteria) will appear later.

2.1. Performance Measures. We measure the performance of an on-line algorithm for
this problem by its competitive ratio [6]. Letσ be a sequence of offers of machines and
orders of demand for units of the commodity to be produced.

We denote by ON(σ) the cost of the on-line algorithm ON for the problem over the
sequenceσ , and with OPT(σ) the cost of anoptimaloff-line algorithm that knows the
entire sequenceσ in advance. We parametrize the sequences by the ratio between the
cost of the most expensive and cheapest machines (denoted byC), by the ratio between
the highest and the lowest production cost (denoted byP), and by the total number of
machines presented during the sequence (denoted byM). Denote by6(C,P,M) the set
of sequences that obey the above restrictions.

The competitive ratio of an algorithm may be a function of the above parameters. An
on-line algorithm ON isρ(C,P,M)-competitive for a set6(C,P,M) of sequences if

sup
σ∈6(C,P,M)

ON(σ)

OPT(σ)
≤ ρ(C, P,M).

3. Upper Bound for the Convex Case. In this section we study the convex case in
which a machine with a lower production cost cannot be cheaper than a machine with

On Capital Investment 25

a higher production cost. We present an on-line algorithm for the convex case with
competitive ratio 4+ 2

√
2≡ 6.83.

3.1. The Algorithm. The algorithm is defined as follows: before producing the first
unit the algorithm buys the machinemi that minimizespi + ci amongst all machines
available at the beginning of the sequence. It then produces the first unit of commodity.
The initial costpi + ci is considered aproductioncost.

Letα andβ be positive constants satisfying 2/α ≤ 1 and 1/α+2β ≤ 1. In particular
we chooseα = 1+√2 andβ = 1/(2+√2).

Before producing any subsequent unit of commodity the algorithm considers buying a
new machine. However, it is not always allowed to buy a new machine. When an amount
of c is spent as capital cost to buy a machine, it is not allowed to buy another machine
until the algorithm spends at leastβ · c on production.

When it is allowed to buy a machine, the algorithm buys the machinemi that mini-
mizes production costpi amongst all machines of capital cost at mostα times the total
production cost incurred since the beginning of the sequence. If no such machine is
available, the algorithm does not buy a new machine.

3.2. Analysis. We prove that the competitive ratio of the above algorithm is 1+ α +
1/β = 4+ 2

√
2.

We use the following notation. Fix the sequenceσ . Denote by ON = ONc + ONp the
total cost of the algorithm that is equal to the sum of the total capital cost ONc and the
total production cost ONp. Let pt be the production cost incurred by the on-line algorithm
to produce unit numbert . Let ONp

t be the production cost incurred by the algorithm to
produce the firstt units, i.e., ONp

t =
∑t

i=1 pi . Let OPTt be the optimal total (capital and
production) cost to produce the firstt units. We start by proving a bound on the total cost
spent on purchasing machines, in terms of the total production cost incurred.

LEMMA 3.1. The total capital costONc incurred by the on-line algorithm is at most
(α + 1/β) of its total production costONp.

PROOF. The capital cost of the last machine bought is at mostα times the total pro-
duction cost. For every other machine, the production cost in the interval between the
time this machine has been bought, and the time the next machine is bought, is at leastβ

times the capital cost of the machine. These intervals do not overlap, and thus the total
capital cost of all the machines except the last one sums to at most 1/β times the total
production cost.

We now relate the production cost of the on-line algorithm to the total cost of the
off-line algorithm.

LEMMA 3.2. At any time t the production costONp
t of the on-line algorithm is at most

the total costOPTt of the off-line algorithm.

PROOF. We prove the claim by induction on the number of units produced.

26 Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Ros´en

For t = 1 the claim holds since the on-line production cost of the first unit (defined
as the sum of the capital and the production costs of the first machine bought) is the
minimum possible expense to produce the first unit. Therefore ONp

1 ≤ OPT1.
Consider unitt for t > 1, and assume the claim holds for any unitt̂ < t . Let m be

the machine used by the on-line algorithm to produce unitt . Letm′ be the machine used
by the optimal off-line solution to produce unitt , let p′ be its production cost, and letc′

be its capital cost.
If p′ ≥ pt , then we have ONpt = ONp

t−1+ pt ≤ OPTt−1+ p′ ≤ OPTt .
If p′ < pt , then the on-line algorithm did not buy machinem′ before producing unit

t . Let the capital cost of the last machine bought by the on-line algorithm (i.e.,m) be c̄,
and assume it was bought just before unitt̄ was produced. Since we consider the convex
case we have thatp′ < pt = pt̄ impliesc′ ≥ c̄.

As we assume that the on-line algorithm did not buym′ just before producing unitt ,
one of the following holds:

1. The capital cost of machinem′ was too high, i.e., less than(1/α)c′ was spent on
production since the start of the sequence.

2. It was not allowed to buy any machine at this time: less thanβ · c̄ was spent on
production since machinem was bought, and until unit numbert − 1 is produced.

We consider each of these cases:

1. We have that ONpt = ONp
t−1+ pt ≤ 2 ·ONp

t−1 ≤ (2/α)c′ ≤ OPTt .
2. We have that

ONp
t = ONp

t̄−1+
t−1∑
i=t̄

pi + pt ≤ ONp
t̄−1+ 2

t−1∑
i=t̄

pi < ONp
t̄−1+ 2β · c̄.

We now distinguish between two subcases, depending on whether machinem′ is
available before unit̄t is produced. The first subcase is that machinem′ becomes
available only after unit̄t is produced. In this case we have

ONp
t < ONp

t̄−1+ 2β · c̄ ≤ OPT̄t−1+ 2β · c̄ ≤ OPT̄t−1+ c̄ ≤ OPT̄t−1+ c′ ≤ OPTt .

The second subcase is when machinem′ is available before unit numbert̄ is produced.
We have that its capital cost,c′, is higher thanα · ONp

t̄−1, otherwise the on-line
algorithm would have bought this (or a better) machine at timet̄ , which contradicts
pt̄ > p′. Therefore we have

ONp
t < ONp

t̄−1+ 2β · c̄ ≤ ONp
t̄−1+ 2β · c′

≤ (1/α)c′ + 2β · c′ = (1/α + 2β)c′ ≤ OPTt .

Combining Lemmas 3.1 and 3.2 we get the following theorem.

THEOREM3.1. The algorithm presented above for the convex case of the on-line capital
investment problem achieves a competitive ratio of1+ α + 1/β.

On Capital Investment 27

4. Lower Bound for the Nonconvex Case. In contrast to the constant upper bound
proved in the previous section, in this section we prove a lower bound on the competitive
ratio of any deterministic on-line algorithm for the nonconvex case. The lower bound
that we prove isÄ(min{logC, log log P/ log log logP, log M/ log logM}), whereC is
the ratio between the highest and the lowest capital costs,P is the ratio between the
highest and the lowest production costs, andM is the number of presented machines.

We now describe the instance of the problem on which the lower bound is achieved.
Let C be some large power of 2, at least 25 = 32. The capital costs of all the machines
in the instance are powers of 2 between 2 andC, and their production costs will be of
the form 1/ logk C, for some positive integerk. We assign alevelbetween 1 and logC
to each machine; machines of leveli have capital costci = 2i .

We divide the time into phases for any level between 1 and logC. If a phase of level
i ends at timet , then a new phase of leveli starts at timet + 1. We assume that at time
0 phases of all levels end. Then at time 1, a phase of each level starts.

A phase of leveli ends when one of the following occurs:

1. The on-line algorithm buys a machine of leveli .
2. The on-line algorithm has reached a global cost (production and capital) in the phase

greater or equal to(i /2)ci .
3. A phase of level higher thani ends.

If more than one phase ends at the same time in Case 1 or in Case 2, we say that
the phase of highest level among them ends in Case 1 or Case 2 and consider the other,
lower-level phases, as ending in Case 3.

The sequence is produced by the adversary as follows: at every integral time unit
t ≥ 1 there is a request for the production of one unit of commodity. The presentation
of machines follows the rule that at the beginning of a phase of leveli , a machine of
level i is presented. To define the production costs of the machines the following rule
is applied: Letnk(i) = i !/k! for i = 1, . . . , logC, k = 1, . . . , logC. When a phase of
level i with an associated machine of production costp ends in Case 1 or Case 2 (and
thus new phases of levelsj ≤ i start), a set ofi machines are presented, one for each
level j = 1, . . . , i . The production cost of the appropriate machine of levelj is defined
to be

pj = p

(logC)
∑ j

k=1 nk(j)
.

Recall that if a phase ends in Case 1 at timet since the on-line algorithm buys a machine
at timet , then at timet + 1 a new machine of the same level is presented, and hence a
new phase of that level starts.

At the beginning we act as if at time 0 a phase of leveli = logC, with a machine
having production costp = 1/ logC, ended, so that phases of all levels start at time 1
when a first set of machines of all levels are presented, with capital and production costs
as defined above.

The sequence will be over with the end of the phase of level logC associated with
the machine of capital costC presented at time 1. The sequence is built so that there is
only one machine of capital costC presented in the whole sequence, and that machine’s
production cost is at most 1/ logC the production cost of any other machine presented
in the sequence.

28 Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Ros´en

We define a relation of inclusion between phases. A phase of leveli contains all the
phases of levelj < i that start simultaneously with that phase, or start during that phase.
Note that no phase of levelj > i starts during a phase of leveli . We call a phaseactive
if it is not ended yet. At every point in time one phase is active at every level.

We call a phase that ends in Case 1 or Case 2 acomplete phaseand a phase that ends
in Case 3 anincomplete phase. If a phase of leveli is complete, then thei − 1 phases at
lower levels that end as a consequence of the end of this leveli phase are incomplete.

LEMMA 4.1. At most i machines of level i− 1 are presented during a phase of level i
for i ≥ 2.

PROOF. For i ≥ 2, a new machine of leveli − 1 is presented during the phase of level
i only when the on-line algorithm buys the previous machine of leveli − 1, or when its
cost during the phase of leveli − 1 reaches((i − 1)/2)ci − 1. In any case, the on-line
algorithm’s cost for the phase of leveli − 1 is at leastci − 1. Hence, the maximum
numberx of phases of leveli − 1 is restricted to beingxci−1 ≤ (i /2)ci , which implies
x ≤ i .

The production costs defined above were chosen so as to obey the property stated in
the following lemma.

LEMMA 4.2. The machine of level i presented during a phase P of level i has production
cost less than or equal to1/ logC times the production cost of

1. any machine presented during a phase that ends before the starting of phase P;
2. any machine of level k< i presented during phase P.

PROOF. We first prove the second part of the claim, by induction oni . We have to prove
that every machine of levelk < i presented during the phase of leveli has production
cost at leastpi · logC, where pi is the production cost of the machine of leveli in
question.

For the basis of the induction, we note that fori = 1 the claim is trivially true, as
there are no machines of levelsk < i . We now prove the claim fori > 1, assuming that
it holds for i − 1. Consider the machines of leveli − 1 presented during the phase of
level i . First note that by Lemma 4.1 there are at mosti such machines. The first machine
is presented together with the machine of leveli . Let p be the production cost of the
machine associated with the phases that end just before these machines are presented.
Then the production cost of the machine of leveli − 1 is

pi−1 = p

(logC)
∑i−1

k=1nk(i−1)
.

Now note that the next machine of leveli −1 is presented when this phase of leveli −1
ends (as no phase of higher level can end while the phase of leveli is active). Therefore,

On Capital Investment 29

the production cost of thèth machine of leveli − 1 presented during the phase of level
i is

pi−1 = p

(logC)`(
∑i−1

k=1 nk(i−1))
.

That is, the production costs of the machines of leveli − 1 are decreasing, with the last
machine presented during the phase of leveli being of production cost

p′i−1 ≥
p

(logC)i (
∑i−1

k=1 nk(i−1))
= p

(logC)(
∑i

k=1 nk(i))−1
= pi logC.

We conclude that all machines of leveli − 1 presented during the phase of leveli have
cost at least logC times the cost of the machine of leveli in question. Using the induction
hypothesis, we also know that any machine presentedduring any of the phases of level
i −1 has production cost at least logC times the production cost of the machine of level
i − 1 and hence at least logC times the production cost of the machine of leveli . This
concludes the proof of the second part.

We now prove the first part of the claim. We prove it by induction on time (i.e., unit of
commodity produced). That is, we claim that any phase that starts at timet is associated
with a machine of production cost less than or equal to 1/ logC the production cost of
any machine presented during a phase that ended before timet . For timet = 1 (when the
sequence starts) the claim is obviously true, as there is no phase that ended previously.
Now consider a phase of leveli that starts at timet > 1. This phase starts due to the
end of a phase of some levelj ≥ i ; let the production cost of the machine associated
with this phase bep. Then the production cost of the machine of leveli presented att
is pi = p/(logC)

∑i
k=1 nk(i). Now note that any phase that ended before timet is either a

phase that starts during the phase of levelj that just ended, or a phase that ended before
the phase of levelj started. For phases of the first type, their production cost is higher
thanp, by the second part of the lemma. Thus, the claim holds with respect to those. As
to machines of the latter type, their production cost is higher thanp, by the induction
hypothesis (as the phase of levelj started before timet). Thus the claim holds with
respect to them as well.

Consider a phase of leveli . Let zi be the cost incurred by the on-line algorithmfor
productionduring that phase. Letyi be the cost of the on-line algorithm incurred during
the phase for capital costs to buy machines of levelsj , j ≤ i . Let Oi = zi + yi .

DEFINITION. Consider a phase of leveli . The restricted optimal costof this phase is
the optimal cost to produce all the units of commodity required to be produced during
the phase under the restriction that one can buy only machines of level not higher than
i , and under the assumption that the algorithm already possesses one machine when the
phase starts.

For a given phase of leveli we denote the restricted optimal cost of the phase byAi .
When considering a sequence of phases of leveli , we denote the respective restricted
optimal costs by a superscript, e.g.,Aj

i .

30 Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Ros´en

By giving upper bounds on the value ofAi we give an upper bound on the cost of the
adversary to serve this portion of the sequence. Obviously, we are interested in an upper
bound onAlogC. For AlogC, the restriction above is empty, and by adding the cost of the
cheapest machine available when the sequence starts, we get an upper bound on the cost
of the real adversary for the whole sequence.

First, we state two upper bounds onAi . The first upper bound is derived from the case
where the optimal algorithm chooses to buy the machine of leveli presented when the
phase starts. The other one is derived from the case in which the optimal solution does
not buy this machine.

LEMMA 4.3. For any phase of level i, Ai ≤ 2ci .

PROOF. We consider the possible scenario in which the optimal solution buys the ma-
chine of leveli that is presented at the beginning of the phase as soon as it is presented.
The main argument of the proof is that the on-line algorithm may use this machine only
for the last unit of commodity produced in the phase, since by buying it the phase ends.
Therefore, any on-line algorithm produces with production cost higher than that of the
optimal solution, as all other machines available until the end of the phase have, by
Lemma 4.2, higher production costs by at least a logarithmic factor.

The adversary can first buy the machine of leveli , incurring a cost ofci = 2i , and
then produce the rest of the demand using this machine. The production cost of the
machine used is, with the possible exception of the last unit produced in the phase, at
most 1/ logC times the production cost of the machine used by the on-line algorithm.
The production of the last unit costs at most 1/ logC since this is an upper bound on the
production cost of all machines. Then the optimal solution incurs a production cost of
at mostzi / logC + 1/ logC.

However,

zi <
i

2
ci + 1

logC
≤ logC

2
ci + 1

logC

sincei ≤ logC and the last unit of demand is produced by the on-line algorithm incurring
a cost of at most 1/ logC.

For logC ≥ 4 we have

Ai ≤ ci + zi

logC
+ 1

logC

< ci + ((logC)/2)ci + (1/ logC)

logC
+ 1

logC

= ci + ci

2
+ 1

log2 C
+ 1

logC
≤ 2ci .

The second upper bound onAi is derived from the case in which the adversary
chooses not to buy the machine of leveli . We can give an upper bound on the restricted
optimal cost by summing up the costs of the lower level phases from which this phase is
composed. A phase of leveli (complete or incomplete) is partitioned into a sequence of

On Capital Investment 31

phases of leveli −1, whose number we indicate bysi . The last one of those phases may
be incomplete, while the firstsi − 1 are complete. Thus, we get the following lemma.

LEMMA 4.4. Consider a phase of level i. Let Aj
i−1, j = 1, . . . , si , be the restricted

optimal cost of the jth subphase of level i− 1. Then Ai ≤
∑si

j=1 Aj
i−1.

THEOREM4.1. If an algorithm for the nonconvex on-line capital investment problem
is ρ-competitive, thenρ = Ä(logC).

PROOF. We first observe that the (unique) phase of level logC indeed ends, since all
production costs are positive and therefore the on-line production cost eventually reaches
((logC)/2)C (the phase can end earlier if the on-line algorithm buys the machine of
level logC).

We will now show that any on-line algorithm pays a global cost (over the sequence)
of at least 1

32 logC times the cost of the adversary.
To prove that, we first prove a claim concerning a phase of any leveli . We focus

our attention on a specific phase of leveli . The phase starts one unit of time after that
the previous phase of leveli ends. By definition, one machine for each levelj ≤ i
is presented at the beginning of the phase. Observe that during this phase the on-line
algorithm does not buy any machine of level higher thati , since otherwise the phase
immediately ends.

We prove the following claim:

• Oi ≥ ((i − 1)/8)Ai for a complete phase;
• Oi ≥ ((i − 1)/8)Ai − ci /2 for an incomplete phase.

We prove the claim for each of the three cases in which a phase ends. Recall that in
Cases 1 and 2 the phase is complete and the first part of the claim must be proved, while
in Case 3 the phase is incomplete and the second part of the claim must be proved. We
prove the claim by induction oni . The claim obviously holds for leveli = 1. To prove
the claim for a leveli + 1, we assume it holds for levelsk ≤ i .

1. In Case 1 the phase ends when the on-line algorithm buys the machine of leveli + 1.
Thus,Oi+1 is obtained by the sum ofO j

i for 1 ≤ j ≤ si+1, for thesi+1 phases of
level i contained in the phase of leveli + 1, plus the capital costci+1 for buying the
machine of leveli + 1 that ends the phase. Therefore

Oi+1 =
si+1∑
j=1

O j
i + ci+1 ≥

si+1∑
j=1

i − 1

8
Aj

i −
ci

2
+ ci+1

≥ i − 1

8
Ai+1+ 3

4
ci+1 ≥ i

8
Ai+1.

The first inequality stems by applying the inductive hypothesis. The second inequality
is obtained from Lemma 4.4 and the relationci = 2ci−1. Finally, the last inequality
follows from Lemma 4.3.

2. In Case 2 the global cost of the on-line algorithm reaches the value((i + 1)/2)ci+1,

32 Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Ros´en

for i ≥ 1. Then, applying Lemma 4.3, it follows that

Oi+1 ≥ i + 1

2
ci+1 ≥ i

8
Ai+1.

3. In Case 3 the phase ends because a phase of a higher level ends in Case 1 or Case 2.
The costOi+1 of the incomplete phase is obtained by the sum ofO j

i for 1≤ j ≤ si+1,
for thesi+1 phases of leveli contained in the phase of leveli + 1. Note that the last
phase of leveli is also incomplete. The claim is proved as follows:

Oi+1 =
si+1∑
j=1

O j
i ≥

si+1∑
j=1

i − 1

8
Aj

i −
ci

2

≥ i − 1

8
Ai+1− ci+1

2
+ ci+1

4
≥ i

8
Ai+1− ci+1

2
.

The first equality indicates the on-line global cost in the phase, while the first inequality
is derived by applying the inductive hypothesis. The second inequality is obtained
from Lemma 4.4 and the relation between the capital costs of machines of leveli +1
andi , while the final inequality is derived from Lemma 4.3.

Since the unique phase of level logC is a complete phase and its completion ends the
sequence, we have that ON =OlogC ≥ ((logC − 1)/8)AlogC. The cost of the optimal
adversary is at mostAlogC + 2, where the additional cost of 2 is the cost to buy a first
machine, as the costsAi are based on the assumption that a machine is available to the
algorithm when the sequence starts. We get that ON≥ ((logC)/16)(OPT− 2). Since
the phase of level logC ends either when the on-line algorithm buys the machine of level
logC or when its total cost reaches((logC)/2)C, we have that ON≥ C > (logC)/8.
We get ON≥ ((logC)/16)OPT− (logC)/16 · 2 and ON≥ ((logC)/32)OPT.

The following corollary states the lower bound as a function of the ratioP between
the highest and the lowest production costs, and of the maximum number of presented
machinesM .

THEOREM4.2. If an algorithm for the nonconvex on-line capital investment problem
is ρ-competitive, thenρ = Ä(log log P/ log log logP) andρ = Ä(log M/ log logM).

PROOF. The claim follows by observing that in the sequence for theÄ(logC) lower
bound, the ratio between the maximum and the minimum production cost isP =
(logC)(

∑logC−1
k=1 nk(logC))=(logC)O(logC)! . Hence, it follows thatÄ(logC)=Ä(log log P/

log log logP). Similarly, the number of machines presented isM ≤∑logC
k=1 nk(logC) =

O((logC)!), it therefore follows thatÄ(logC) = Ä(log M/ log logM).

5. Upper Bound for the Nonconvex Case. In this section we present an algorithm
for the general (nonconvex) case of the problem. This algorithm achieves a competitive
ratio of O(min{1+ logC,1+ log log P,1+ log M}).

On Capital Investment 33

5.1. The Algorithm. Given any new machine with production costpi , and capital
cost ci , our algorithm first rounds these costs up to the nearest power of 2, i.e., if
2 j−1 < ci ≤ 2 j , then it setsci = 2 j , and if 2k−1 < pi ≤ 2k, then it setspi = 2k.

The algorithm is defined as follows. Before producing the first unit buy the machine
mi that minimizespi +ci amongst all machines available at the beginning. Then produce
the first unit of commodity. The initial costpi + ci is considered aproductioncost.

Before producing any subsequent unit, order all available machines by increasing
production cost and (internally) increasing capital cost. Number the machines by index
i , and letpi , ci be the production costs and capital costs, respectively. For alli , pi ≤ pi+1,
and if pi = pi+1, thenci ≤ ci+1. Buy the machine with leasti that satisfies the two
following conditions.

• Its production costpi is smaller than the production cost of the current machine.
• A production cost of at leastci has been spent since the last time a machine with

capital costci has been bought (or since the beginning of the run, if no such machine
has been previously bought).

5.2. Analysis. We prove that the above algorithm achieves a competitive ratio of
O(min{1 + logC,1 + log log P,1 + log M}). In the following analysis we assume
that all capital and production costs are indeed powers of 2, as rounded by the on-line
algorithm. Clearly, an adversary that uses this modified sequence incurs a cost of at most
twice the cost incurred by the real adversary that uses the real sequence.

Denote by ON = ONc + ONp the total cost of the algorithm which is equal to the
sum of the total capital cost ONc and of the total production cost ONp (which, by our
definitions, includes the capital cost of the first machine bought).

LEMMA 5.1. The total capital cost ONc is at most O(logC) times the total production
cost ONp.

PROOF. For a givenj , consider all the machines of cost 2j that are bought. A machine
of cost 2j can be bought only after an amount of 2j has been spent on production since
the last time a machine of the same cost has been bought (or since the beginning of the
sequence, if no such machine was previously bought). It follows that, for anyj , the total
cost of the algorithm for buying machines of cost 2j is at most ONp. Since there are at
most 1+ dlogCe different costs for the machines, ONc = O(ONp · (1+ logC)).

LEMMA 5.2. The total capital cost ONc is at most O(1+ log M ′) times the total pro-
duction cost ONp, where M′ is the total number of machines bought.

PROOF. Let 2l be the cost of the cheapest machine, and let 2k be the cost of the most
expensive machine such that 2k ≤ ONp. All machines bought by the algorithm have
costs between 2l and 2k. For any j , l ≤ j ≤ k, let bj be the number of machines of cost
2 j bought by the algorithm. An upper bound on the capital cost spent by the algorithm is
the maximum ofZ =∑k

j=1 bj 2 j as a function of the variablesbj , j = l , . . . , k, subject

to constrantsbj 2 j ≤ ONp, and
∑k

j=l bj = M ′.

34 Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Ros´en

We relax the above problem by allowing the variablesbj to assume noninteger values.
Clearly, the soution to this relaxed problem is also an upper bound on ONc. Denote bybr

j ,
j = l , . . . , k, the variables of the relaxed problem. For the optimal solution of the relaxed
problem, there are noh andh′ such thatl ≤ h < h′ ≤ k, br

h > 0 andbr
h′ < ONp/2h′ .

Otherwise, there would have been a solution with a higher value of the objective function
Z of the relaxed problem, achieved by reducingbr

h and increasingbr
h′ by the same amount,

until eitherbr
h = 0 orbr

h′ = ONp/2h′ .
From the above observation we derive an upper bound on the maximum of the objec-

tive function (and thus an upper bound on ONc). If ONp/2k ≥ M ′, then the maximum is
achieved by settingbr

k = M ′ andbr
j = 0 for l ≤ j ≤ k−1. In this case

∑k
j=l bj 2 j ≤ ONp,

and the lemma clearly holds.
If ONp/2k < M ′, let h∗ be the maximum integer such that

∑k
j=h∗(ONp/2 j) ≥ M ′.

An upper bound on the maximum of the objective function is obtained by assigning
br

j = ONp/2 j , j = h∗ + 1, . . . , k,br
h∗ = M ′ −∑k

j=h∗+1 br
j ≤ ONp/2h∗ , andbr

j = 0, for
j = l , . . . , h∗ − 1. The upper bound on the value of the objective function is

k∑
j=l

br
j 2

j ≤
k∑

j=h∗
br

k2k− j 2 j =
k∑

j=h∗
br

k2k ≤ ONp · (k− h∗ + 1).

It remains to show thatk−h∗+1= O(1+log M ′). By definition ofh∗,
∑k

j=h∗+1 2k− j br
k

=∑k
j=h∗+1 br

j =
∑k

j=h∗+1(ONp/2 j) < M ′. Therefore, we get
∑k

j=h∗ 2k− j br
k ≤ 3M ′ and

thus(2k−h∗+1 − 1) ≤ 3M ′/br
k. Since ONp ≥ 2k, it follows thatbr

k ≥ 1, and we obtain
2k−h∗+1− 1≤ 3M ′. SinceM ′ ≥ 1, we obtaink− h∗ + 1= O(1+ log M ′).

COROLLARY 5.1. The total capital cost ONc is at most O(1+ log M) times the total
production cost ONp.

COROLLARY 5.2. The total capital cost ONc is at most O(1+ log log P) times the total
production cost ONp.

PROOF. The algorithm buys a machine only if the production cost decreases. Since all
production costs are powers of 2, the algorithm buys at mostO(1+ log P)machines.

LEMMA 5.3. At any time the total production cost ONp of the on-line algorithm is at
most twice the total cost of the off-line algorithm.

PROOF. Let pt be the production cost incurred by the on-line algorithm to produce unit
numbert . Let ONp

t be the production cost incurred by the algorithm to produce the first
t units, i.e., ONp

t =
∑t

i=1 pi . Let OPTt be the lowest (optimal) cost to produce the first
t units.

We prove by induction ont that ONp
t ≤ 2 ·OPTt .

To produce the first unit the on-line algorithm buys the machine that minimizes the
sum of productions and capital costs. This is the minimum possible cost to produce the
first unit. Thus, ONp1 ≤ OPT1.

On Capital Investment 35

Consider unitt for t > 1, and assume that the claim holds for every unit numbert̂ ,
t̂ < t . Let m be the machine used by ON to produce unitt . Let m′ be the machine used
by OPT to produce unitt , let p′ be its production cost, and letc′ be its capital cost.

If pt ≤ p′, then we have

ONp
t = ONp

t−1+ pt ≤ 2 ·OPTt−1+ pt ≤ 2 ·OPTt−1+ p′ ≤ 2 ·OPTt .

We now consider the case in whichp′ < pt . It follows that the on-line algorithm did
not buy machinem′ although it was available before unitt is produced. If this happens
one of the following holds:

1. The production cost incurred by the on-line algorithm by timet − 1 is less thanc′.
On the other hand, the optimal off-line algorithm buys machinem′, incurring a cost
of c′. It follows that

ONp
t = ONp

t−1+ pt ≤ 2 ·ONp
t−1 ≤ 2c′ ≤ 2 ·OPTt .

2. Some machine of costc′ was previously bought by the on-line algorithm, but the
production cost incurred by the algorithm since then is less thanc′. Assume that such
a machine was bought just before unitt̄ was produced. As unitt is produced with
production cost higher thanp′, we can conclude thatm′ was not available before
unit t̄ was produced. Thus,m′ was bought by the off-line algorithm after unitt̄ was
produced. On the other hand, the on-line production cost since the production of unit
t̄ is less thanc′. Therefore, we have

ONp
t = ONp

t̄−1+
t−1∑
i=t̄

pi + pt ≤ ONp
t̄−1+ 2

t−1∑
i=t̄

pi ≤ 2 ·OPT̄t−1+ 2c′ ≤ 2 ·OPTt .

We conclude with the following theorem, whose proof is straightforward from the
previous lemmata.

THEOREM5.1. The competitive ratio of the on-line capital investment algorithm de-
scribed above is O(min{1+ logC,1+ log log P,1+ log M}).

Acknowledgments. We thank Ran El-Yaniv for useful comments and the anonymous
referees for their useful comments.

References

[1] A. Chou, J. Cooperstock, R. El-Yaniv, M. Klugerman, and F. Leighton. The Statistical Adversary Allows
Optimal Money-Making Trading Strategies. InProc. 6th Annual ACM/SIAM Symposium on Discrete
Algorithms, pp. 467–476, 1995.

[2] R. El-Yaniv, A. Fiat, R. Karp, and G. Turpin. Competitive Analysis of Financial Games. InProc. 33rd
IEEE Annual Symposium on Foundations of Computer Science, pp. 327–333, 1992.

36 Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Ros´en

[3] R. El-Yaniv and R. M. Karp. The Mortgage Problem. InProc. 2nd Israeli Symposium on Theory of
Computing and Systems, pp. 304–312, June 1993.

[4] R. M. Karp, On-Line Algorithms Versus Off-Line Algorithms: How Much Is It Worth to Know the
Future? InProc. IFIP 12th World Computer Congress. Volume 1: Algorithms, Software, Architecture,
pp. 416–429. Elsevier, Amsterdam.

[5] P. Raghavan. A Statistical Adversary for On-Line Algorithms. InOn-Line Algorithms, pp. 79–83.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 7. American
Mathematical Society, Providence, RI/Association for Computing Machinery, New York, 1991.

[6] D. D. Sleator and R. E. Tarjan. Amortized Efficiency of List Update and Paging Rules.Communications
of the ACM. 28:202–208, February 1985.

