
Uniform Service Systems with k Servers*

Esteban Feuerstein

Depto. de Computaci6n, FCEyN, Universidad de Buenos Aires
Instituto de Ciencias, Universidad de General Sarmiento, Argentina

e f e u e r s t @ d c , u b a . a r

A b s t r a c t . We consider the problem of k servers situated on a uniform
metric space that must serve a sequence of requests, where each request
consists of a set of locations of the metric space and can be served by
moving a server to any of the nodes of the set. The goal is to minimize
the total distance traveled by the servers. This problem generalizes a
problem presented by Chrobak and Larmore in [7]. We give lower and
upper bounds on the competitive ratio achievable by on-line algorithms
for this problem, and consider also interesting particular cases.

1 Introduct ion

During the last decade considerable at tention has been devoted to competitive
analysis of on-line algorithms. On-line problems have a variety of relevant appli-
cations in computer science, logistics, economy and robotics.

Probably the most famous on-line problem is the Paging Problem [15], tha t
is the problem of managing a two-level memory, one level of limited capacity and
fast access time (the cache) and the other one with slow access time but poten-
tially unlimited capacity. An algorithm for this problem must determine which
page of the cache to evict in front of a page-fault, with the goal of minimizing
the total number of page faults incurred for serving a sequence of requests. On-
line paging algorithms must decide which page to replace without knowledge of
future requests.

On-line algorithms are in general evaluated using competitive analysis [11]:
an on-line algorithm for a certain problem is said to be c-competitive if the cost
incurred by it to serve any input is at most c times the cost charged to the
optimal (off-line) algorithm for tha t input plus a constant.

One of the most challenging on-line problem is the k-server problem [12], in
which k servers, located on a metric space, must serve a sequence of requests at
points of the metric space. An on-line algorithm for tha t problem tries to min-
imize the total distance traveled by the servers, deciding which server is moved

* This work was partially supported by the KIT program of the European Community
(Project DYNDATA), by University of Buenos Aires' Programaci6n para Investi-
gadores J6venes, project EX070/J "Algoritmos Eficientes para Problemas On-line
con Aplicaciones" and by UBACYT project "Modelos y T~cnicas de Optimizaci6n
Combinatoria".

24 Esteban Feuerstein

to each point in an on-line way. The great amount of extensions and general-
izations of the Paging Problem include also the weighted version of Paging [14],
the access graph model of [5], Metrical Task Systems [6] and Request-answer
games [4].

In [7], Chrobak and Larmore proposed a family of on-line problems, namely
Metrical Service Systems (MSS). In an instance of MSSw one server situated on
a metric space must serve a sequence of requests, where each request consists
of a set of nodes of the metric space (of size at most w) and can be served by
moving the server to any of the nodes of the set. The goal is to minimize the total
distance traveled by the server. An important particular case of MSS is when
the metric space is uniform, i.e. when all the distances are equal (uniform-MSS).
Both MSS and uniform-MSS are particular cases of Metrical Task Systems, but
not of the k-server problem, as each request specifies different alternative nodes
to cover.

In this paper we present the generalization of uniform-MSSw to the case
in which k > 1 servers are used. We call this problem (k, w)-Uniform Service
Systems (abbreviated as USS(k,,~)).

It is a well known fact tha t the k-server problem on uniform metric spaces is
isomorphic to the paging problem with a cache of size k. Analogously, USS(k,~)
can be seen as the following generalization of the Paging problem: given a set
U of pages, an on-line algorithm with a cache of size k must deal with a finite
sequence of requests, each of which consists in a subset r C U of size at most w.
Each request is served by having in the cache at least one element of r. In the
reminder of this paper we shall use this "Paging-oriented" terminology rather
than that of server problems.

The problem, in both its server and paging versions, has several natural ap-
plications. As an example, consider a distributed network with virtual-circuit
routing, in which each processor may have at most a constant number of si-
multaneously enabled connections. If the data needed to perform some task are
replicated over the network, a processor has the alternative of communicating
with different processors being forced, in general, to close its connection with
some other one. Another example is given by a k mobile servers tha t can give
their service in any branch of each of the clients' companies. The decision about
where to serve each request will influence the total t ime needed to process a
sequence of requests, as well as the decision of which server to assign to each
request.

The problem treated in this paper is a sort of "dual" of the one considered
in [8], in which every request consists of a set of pages, all of which have to be
present in the cache to serve the request.

Other related work has been done by Ausiello et al. [3,2], Alborzi et al. [1]
and by Feuerstein et al. [9]. In [3, 2] the problem of efficiently serving a sequence
of requests in a metric space presented in an on-line fashion is considered. At
every moment, a server may decide which of the requests to serve, with the goal
of minimizing the total completion time. A similar approach is taken in [1] where
it is assumed that a fixed number of clients present sequences of requests in a

Uniform Service Systems with k Servers 25

metric space, tha t must be served by a single server. At any time, each client has
at most one request to be served, after which a new one may be presented. They
consider different cost models, namely the make-span, total completion t ime and
maximum response time. The main difference with the previously cited works
is that , as the requests are threaded, the t ime in which requests are presented
depends on the order in which the server processes previous requests. Finally, [9]
introduces the generalization of Paging to the case where there are many threads
of requests. Tha t models situations in which the requests come from more than
one independent source. Hence, apart from deciding how to serve a request,
at each stage it is necessary to decide which request to serve among several
possibilities. The difference with the approach taken in this paper is that , in the
setting of [9], all the requests tha t are not served at some stage are repeated in
the next one, while here a brand-new set of pages may be requested.

We show that no on-line algorithm for USS(k,w) can achieve a competitive

ratio bet ter than (k+w~ _ 1, and we present an O(kmin(k w, wk))-competitive
algorithm. For any fixed value of k (and arbi t rary w) this is at most a constant
factor away from the lower b o u n d . However, for k tending to infinity the upper
bound is a constant times k away from optimality. We conjecture tha t the same
algorithm achieves a competitive ratio of O(min(k w, wk)), and therefore obtains
an optimal (up to a constant factor) competitive ratio also when k tends to
infinity, but we have not proved it in the general case. However, we have proved
it for w = 2 when the requests verify certain restrictions that will be explained
later. Our algorithm solves at each step an instance of an NP-complete problem.
In Section 4 we present a polynomial-time algorithm that achieves a competitive
ratio of 2k with a cache of size 2k against an adversary with a cache of size k.
The lower and upper bounds we obtain generalize the results of [7] regarding
uniform metric spaces.

2 The General Case

The following is a lower bound on the competitive ratio of any on-line algorithm
for this problem.

T h e o r e m 1. I] c < ,(k+w]w, - 1 then no on-line algorithm for USS(k,w) is
e-competitive.

Proof. We consider a universe U of cardinality k + w. Given an on-line algorithm
A, we construct a sequence aA in the following way: each request of aA is to the
w pages that are not present in A's cache, and hence A faults at each request.
We can assume that A evicts only one page at each fault, otherwise we could
construct an algorithm A' behaving in that way and such that for every sequence
a, CA, (a) < CA(a) (for any algorithm ALG, CALG(a) denotes the cost incurred
by ALG to serve a sequence a of requests, the sequence is omitted when it is
clear from the context). Hence, if we let laA[= n, we have CA = n. Consider now
the family Y of all the subsets of U of cardinality w. We have that I~-[= (k+w~

k ~ff / "

26 Esteban Feuerstein

At any moment, the configuration of the cache of any algorithm (off-line or on-
line) can be associated to the set f of the pages of U that are not present in
the algorithm's cache, with f E ~'. Consider a family of adversaries ADVi such
that each adversary is in one of the possible (k+~) configurations, an exception

made of the configuration of A. There are (k+~) _ 1 such adversaries, and all
of them can serve each request r of ffA with no cost. Now assume tha t A evicts
some page x ~ r to make place for a page y E r. Then, the only adversary whose
cache would coincide with A's cache after A's move evicts y and brings x; but
only after serving the request r. Then we can think as all adversaries together
paying a cost of 1 for each request. Hence, we have that ~-]~i CAD~ = n. As there
are in total ,(k+~w �9 - 1 adversaries, the average cost is ~ . But hence there

is at least one i such that CADV, is not more than average, and the ratio ca
C A D V i

is at least (k+~ _ 1. []
k lyJ /

In the following we propose an algorithm for USS(~,w). The algorithm, which

we call the Hitting Set algorithm (I-IS) is k min(k~k+~_~l-k k-2 w i , ~-]~i=0 + wk)-c~ et-
~-~k--2 .i wk itive. Notice that z.,~=o w + < 2w k.

HS divides the sequence of requests in phases, the first phase starting with
the first request of the sequence. Each time I-IS cannot answer the current request
it behaves as follows. First, it computes a minimum cardinality set H of pages
that intersects all the requests that produced a fault during the current phase.
If IHI < k then H is brought into the cache. If there is more than one set
with minimum cardinality, then the one that can be brought into the cache with
minimum cost is chosen. Otherwise, if IHI > k the current phase is finished and
a new phase starts with the present request.

The constraint of choosing the next configuration of the cache so as to mini-
mize the (Hamming) distance to the current one is not really used in the proof of
the following theorem, but it is a necessary condition to prove the bet ter bound
of O(k ~) tha t we conjecture is achieved by the algorithm. Notice that the "lazy"
version of HS, tha t instead of bringing into the cache a complete hitt ing set H
brings just one page of H useful to serve the current request, can be forced to pay
as much as I-IS, simply by repeating, after each "new" request, all the previous
requests of the phase.

T h e o r e m 2. HS is k min(k~-~l-~ , ~-2 ~i=o wi + wk)'c~ etitive for USS(k,w).

Proo]. By definition of HS, all the requests of a phase plus the first one of the
following phase need at least k + 1 different pages to be answered. Therefore, we
know that the adversary pays at least a cost of 1 for each phase. We will show

minf k~+l-k k-2 that HS may fault on at most ~ k-1 , ~-~i=0 wi + wk) different requests
during a phase. By definition during a phase HS does not fault twice on the
same request, and the cost for each single request is at most k, therefore the
total cost of HS during each phase is not more than k times the number of
faults, and the thesis follows. We will separately prove that:

Uniform Service Systems with k Servers 27

i) the maximum number of faults during a phase is at most than ~ k ~ = E i = I
�9 r'~k--2 i k~+a-k and ii) it is at most than 2-.,i=o w + w k. k--1 '

i) Let us first see that the maximum number of faults of a phase can be at most
w i ~-~i=1 k . We will proceed by induction on w.

Basis (w = 2). Let H be the final hitting set of a phase, i.e. the last set of
cardinality not greater than k such that all the requests of the phase could be
served by having H in the cache. Let v E H. After at most k + l different requests
including v, it is clear that any hitting set of cardinality less than k + 1 contains
v. Hence HS may fault at most k + 1 times for each of the at most k pages in
H . Summing over all pages of H we get tha t the number of different requests of
a phase may not exceed k 2 + k.

Inductive step. Suppose that the thesis is t rue for w _< s - 1, we will prove it
for w = L Consider the family Yv of all the requests containing a particular
page v and the family ~'~ = {F - {v}[F e ~'v} of the requests of Yv without
v. Obviously, for every F E ~'~ we have that IFI < l - 1, and every hitt ing set
of Y, not containing v must be a hitting set of Y~. By inductive hypothesis,

t--1 k i after at most 1 + ~':~i=1 requests of this type every hitting set of Y~ must be of
cardinality at least k + 1, and hence HS will necessarily keep v to "cover" ~'v until
the phase is over. Therefore, summing over all pages of the final hitting set we
get tha t the maximum number of faults in a phase is at most k(1 + ~-~-1 k i) --_

t k i ~ k i. k + ~:~=2 = ~ = x

ii) We will now prove, by induction on k, tha t the maximum possible number
k - 2 w k" of faults in a phase is Y]~i=0 wi +

Basis (k = 1). The first request of the phase gives at most w alternatives, and
hence there are at most w different configurations in which tha t request can be
served.

Inductive step. We assume the thesis is t rue for k < s - 1 and will prove it for
k = s Consider the first request r such that the size of the minimum hitt ing set
of all the requests so far in the phase becomes L Tha t request can be covered in
at most w different ways. By inductive hypothesis, for each of these ways there

s w i .~_ Wt-- 1 may be at most Y]~i=o requests before the other s - 1 elements of the
hitting set become fixed. Then the total number of faults during a phase can be

l - 3 i at most l + w (~ i : o W + wt-1) = l + ~'~it-21wi + wt = ~-]~it-2 wi + w t. n

From the previous Theorem we get the following corollary regarding the
performance of the algorithm HS for MSS~ on uniform metric spaces (MSS~ is
the class of Metrical Service Systems where all requested sets have cardinality
at most w). Our bound coincides with that of [7] for this particular case.

C o r o l l a r y 3. HS is w-competitive .for MSSw on uniform metric spaces. 0

28 Esteban Feuerstein

To conclude the analysis of the performance of HS for USS(k,~), we will
quantify the gap between the upper bound of Theorem 2 and the lower bound
of Theorem 1 in the two limit cases, i.e. when either w or k tend to infinity and
the other value is fixed.

If we denote as C the competitive ratio achieved by algorithm HS (that is,
C k min(kw;_l~ -k k -2w ' wk)), we = , ~ i = 0 + have that for any fixed k, there is a

value w(k) such that Vw > w(k), C k-2 i _ = k(~'~i= o w + wk). Conversely, for any

fixed w there exists a value k(w) such that Vk > k(w), C = k ~ . Applying

Stirling's formula we get the following values for the ratio C~ (k+w~ (recall tha t
k 1/)]

k-2wi w~ 2wk): ~:~=o + -<

C kk+Z V~2V~-~
lim (k+,v~ <

w-~oo -- e k '

c
lim - - ---- lim

k - -) o o

Note that in the first case the ratio tends to a constant, while in the second
case it grows proportionally to the value of k.

3 T h e A c y c l i c C a s e f o r w - - 2

In the particular case of requests of cardinality 2, every request can be seen as an
edge of a graph with nodes the universe U, and any set of requests can be seen
as a graph on U. In this case algorithm HS reduces to computing a minimum
vertex cover of the subgraph determined by the requests of the current phase. In
the following we will show that if the graph of the requests is acyclic, then HS
obtains a competitive ratio tha t is at most a factor of 2 away from optimality.
Actually, to prove this we need a smoother restriction on the input sequence, we
only need that the (at most) k 2 + k requests tha t form each phase do not form
cycles. This particular case of USS(k,2) is called acyclic-USS(k,2). We need some
definitions and preliminary results before stating and proving the theorem.

D e f i n i t i o n 4. Given graph G and a node n of G, we say that n is:

- fixed if n E H for every minimum cardinality vertex cover H of G;
- free if there exist two minimum cardinality vertex covers H and H ~ of G

such tha t n E H and n ~ H' ;
- .forbidden if there is no minimum cardinality vertex cover H of G such that

n E H .

Making some abuse of notation, we will see the pages of U as the nodes of the
graph induced by the requests of the phase. Besides, we will continue referring
to Hitting Sets instead of Vertex Covers.

L e m m a 5. After a request involving a free and a forbidden node, the number
of free nodes in HS's cache is decremented exactly by the cost paid by HS.

Uniform Service Systems with k Servers 29

Proof. Suppose the request is to the pair {x, y}, where x is free and y is forbidden.
Then, after the request, x will be part of every minimum hitting set at least until
the size of a minimum hitting set is incremented, and by definition of HS this
request is served by bringing x into the cache, possibly together with some other
nodes. In general, HS will replace a set Z of free nodes by a set X, with x E X
and IZ I = IX I. We will proceed by induction on the cardinality of X and Z.

Basis. If HS replaces some node z by x, the cost is 1, and the number of free
nodes in the cache is decremented by 1, because z was free and x is now fixed.

Induction. We will consider the following two cases:

(1) There is only one neighbor z of x with z E Z. Then we have two possibilities:
(a) All the neighbors of z (except x) where already in the cache. Then there

is a minimum Hitting Set obtained replacing z by x, a contradiction
because we are supposing that the minimum change is of cardinality
bigger than one.

(b) Some neighbors {v l , . . . ,vj} of z must be brought to the cache so as to
cover the edges (z, vi) that remain uncovered because of the eviction of
z. The changes done to bring each v~ into the cache are the same that
would have been done if a request (vi, w} had been requested, for some
forbidden node w. By induction, all the nodes brought in such cases
remain fixed, and hence the same happens in this case. Therefore, all
the nodes brought in this case are fixed.

(2) There are j > 1 neighbors z l , . . . ,zj o f x with zi E Z,i = 1, . . . , j . Since we
are considering the acyclic case, all the requests of the phase form a forest.
Let T be the subtree of that forest induced by Z U X . Let Ti,i = 1, . . . , j be
the subtrees of T rooted at z l , . . . , zj respectively, and define Xi = X n Ti
and Zi -- Z N Ti for i -- 1 , . . . , j . As IZI = IXI, and because x E X, we
have that IX {x}l IZl 1. Note that X {x} J - = - - = [.Ji=l Xi. Then there
is at least one i such that]X~ I < IZi]. But in this case replacing only Z~ by
Xi U ~x} would give a hitting set of the same or smaller cardinality than the
previous hitting set, contradicting the hypothesis that replacing Z by X was
a minimum cost change (or contradicting the minimality hypothesis of the
previous hitting set). O

T h e o r e m 6. HS is O(k2)-competitive for acyclic-USS(~,2).

Proof. We already know that the adversary incurs at least in a cost of 1 during
each phase, and we will bound HS's cost during the phase. For this we will use
the following potential function:

= (k + 2) I H I - i f l - kill

where H is a minimum hitting set, f is the set of free nodes in HS's cache and
t is the number of non-trivial connected components (trees), all referred to the
graph induced by the requests of the current phase that produced a fault.

30 Esteban Feuerstein

The value of �9 is 1 after the first request of a phase, and is never greater
than k 2 + 2k. Therefore, if we show that �9 is incremented at least by the cost
paid by HS for each move we have that the total cost charged to I-IS during the
phase is not greater than k 2 + 2k. We will now see that this holds.

The first thing to note is that requests involving at least one fixed node are
served by HS without cost (as by definition of I-IS fixed nodes are present in the
cache). Those requests are ignored by the algorithm, and produce no variation
in the potential function. Hence we have to analyze the variation of �9 in the
remaining cases, that are:

Forbidden/Forbidden: In this case, the cardinality of a minimum hitting set
is incremented by one, and the cost paid by HS is exactly 1. We can distin-
gnish two sub-cases:

- The requested nodes are both trivial trees, and hence the number of free
nodes and the number of non-trivial trees increase by 1. Then we have
that A ~ = (k+ 2)(IH[+ l) - (k + 2)[H]- l - k (t + l)+kt = k + 2 - 1 - k = 1.

- At least one of the requested nodes was part of some non-trivial tree.
Then the number of non trivial connected components does not increase,
and the number of free nodes may increase at most by [H I + 1. Hence
A~ >_ (k+ 2)([HI + 1) - (k+ 2)[HI - [HI - 1 = k + 2 - [HI - 1 >_ 1.

Forbidden/Free: In this case, the size of the minimum hitting set remains
unchanged, and the number of non-trivial connected components does not
increase. By Lemma 5, the decrement in the number of free nodes in cache is
equal to the cost paid by HS, yielding an increment in ~ equal to that cost.

Free /Free : The size of the minimum hitting set and the number of free nodes in
cache do not change. As for the number of non trivial connected components,
it must necessarily decrease by 1, and therefore we have Aq5 = - k (t - 1) +
kt = k. But k is always greater than the cost paid by HS. Note that here we
use the fact that the graph of the requests of a phase is acyclic. [3

4 A P o l y n o m i a l - t i m e A l g o r i t h m

HS has an important drawback regarding its efficiency. In fact, at each fault HS
has to solve an instance of the Hitting Set problem, which is NP-complete, even
in the case of w = 2 [10]. We propose a polynomial-time on-line algorithm that
with a cache of size 2k is 2k-competitive against adversaries with cache size k for
USS(k,2). The algorithm (and its analysis) is based on the ideas of a well-known
2-approximate polynomial algorithm for the Minimum Vertex Cover problem
(see for example [13]). We call this algorithm AHS, and it works as follows: The
sequence of requests is divided in phases, each phase ending after the k-th fault
of the algorithm. A request r is answered in the following way: if at least one
of the pages of r is present in the cache, then nothing is done. Otherwise both
pages of r are brought into the cache and marked, evicting 2 unmarked pages.
If there are no unmarked pages to evict (i.e. there have already been k faults in
the current phase), then all pages are unmarked and the phase is over.

Uniform Service Systems with k Servers 31

AHS follows in a certain way the same philosophy of HS, but keeping a 2-
approximate hitting set of the requests of the phase instead of a minimum hitting
set. Because of this fact, it needs a memory twice as big as that of the adversary
to prevent infinite sequences of requests that could be served by the adversary
with constant cost and that could otherwise produce an unbounded cost each
time the optimal hitting set does not coincide with the one computed by AHS.

T h e o r e m 7. Algorithm AHS with cache-size 2k is 2k-competitive against ad-
versaries with cache-size k for USS(~,2).

Proof. Trivially the total cost of AHS during a phase is 2k. On the other hand,
consider the k requests that produced a fault during a phase plus the first request
of the following phase. By definition of AHS, these requests are k + 1 pairwise
disjoint sets, and hence they need at least k + 1 different pages to be answered.
So we conclude that the adversary must necessarily have at least one fault to
serve all of them. []

Algorithm AHS can be naturally extended to deal with requests of size at
most w, and almost the same proof of Theorem 7 holds for the following The-
orem. The idea is that a w-approximate solution to the Minimum Hitting Set
problem with sets of cardinality at most w may be obtained by an algorithm that
considers the sets one by one and, if the current set is uncovered then it adds all
its elements to the hitting set. This corresponds to extending the approximate
solution of Minimum Vertex Cover of graphs based on a maximal matching to
an approximate solution of Minimum Vertex Cover of w-hypergraphs based on
the computation of a maximal w-dimensional matching.

T h e o r e m 8. Algorithm AHS with cache-size wk is wk-competitive against ad-
versaries with cache-size k for USS(k,w). []

5 O p e n P r o b l e m s a n d F u t u r e R e s e a r c h

The main open problem is to close the gap between the lower bound of Theorem 1
and the upper bound of Theorem 2. As we stated before, we believe that our
algorithm HS achieves better performance than what has been proved.

An interesting subject of future research is to extend USS(k,w) to non-uniform
metric spaces. This would extend both the work in this paper and the work by
Chrobak and Larmore [7] on Metrical Service Systems, were only one server is
considered.

Ac kn ow led gments . I am very grateful to Amos Fiat and Alberto Marchetti-
Spaccamela for useful discussions during early stages of this work.

32 Esteban Feuerstein

References

1. H. Alborzi, E. Torng, P. Uthaisombut, and S. Wagner. The k-client problem. In
Proc. of Eigth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
1995.

2. G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Competitive
algorithms for the traveling salesman. In Proc. of Workshop on Algorithms and
Data Structures (WADS'95), Springer-Verlag, 1995.

3. G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Serving re-
quests with on-line routing. In Proc. of 4th Scandinavian Workshop on Algorithm
Theory (SWAT'g~), pages 37-48, Springer-Verlag, July 1995.

4. S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Widgerson. On the power
of randomization in on-line algorithms. Algorithmica, 11:2-14, 1994.

5. A. Borodin, Sandy Irani, P. Raghavan, and B. Schieber. Competitive paging with
locality of reference. In Proc. of 23rd ACM Symposium on Theory of Computing,
pages 249-259, 1991.

6. A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical
task system. Journal of the Association for Computing Machinery, 39(4):745-763,
1992.

7. M. Chrobak and L. Larmore. The server problem and on-line games. In On-line
Algorithms, pages 11-64, AMS-ACM, 1992.

8. E. Feuerstein. Paging more than one page. In Proceedings of the Second Latin
American Symposium on Theoretical Informatics (LATIN95), pages 272-287,
Springer-Verlag, 1995. An improved version of this paper will appear in Theo-
retical Computer Science (1997).

9. E. Feuerstein and A. Strejilevich de Loma. On multi-threaded paging. In Pro-
ceedings of the 7th International Symposium on Algorithms and Computation
(ISAAC'96), Springer-Verlag, 1996.

10. M. R. Garey and D. S. Johnson. Computers and Intractabiliy - A Guide to the
Theory of NP-completeness. W.H. Freeman and Company, San Francisco, 1979.

11. A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy caching.
Algorithmica, 30:79-119 , 1988.

12. M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for server
problems. Journal of Algorithms, 11(2):208-230, 1990.

13. R. Motwani. Lecture Notes on Approximation Algorithms. Technical Report, Stan-
ford University.

14. P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms.
RC 15622, IBM, 1990.

15. D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of A CM, 28(2):202-208, 1985.

