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Abstract

Incentive compatibility is a central concept in auction
theory, and a desirable property of auction mechanisms. In
a celebrated result, Aggarwal, Goel and Motwani [2] pre-
sented the first truthful deterministic auction for sponsored
search (i.e., in a setting where multiple distinct slots are
auctioned).

Stochastic auctions present several advantages over de-
terministic ones, as they are less prone to strategic bidding,
and increase the diversity of the winning bidders. Meek,
Chickering and Wilson [10] presented a family of truthful
stochastic auctions for multiple identical items.

We present the first class of incentive compatible
stochastic auctions for the sponsored search setting. This
class subsumes as special cases the laddered auctions of
[2] and the stochastic auctions with the condex pricing rule
of [10], consolidating these two seemingly disconnected
mechanisms in a single framework. Moreover, when the
price per click depends deterministically on the bids the
auctions in this class are unique. Accordingly, we give a
precise characterization of all truthful auctions for spon-
sored search, in terms of the expected price that each bidder
will pay per click.

We also introduce randomized algorithms and pricing
rules to derive, given an allocation mechanism for the
single- or multiple-identical-slots scenarios, a new mech-
anism for the multislot framework with distinct slots. These
extensions have direct practical applications.

1. Introduction

A stochastic auction is a special kind of auction in which
the winner is determined in a stochastic or randomized way.
Naturally, by raising her bid a player should increase her
chances of winning the auctioned good.
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In this paper we consider a setting where many distinct
items are simultaneously auctioned, and each participant
bids a single amount that is interpreted as her bid for any
of the auctioned items. However, no bidder can win more
than one item. Finally, we assume that the relative values of
the items are shared by all the players.

The previous assumptions are motivated by the frame-
work of sponsored search and contextual advertisement.
Given a query, search engines (like Yahoo!, Google or
MSN) respond by presenting (ideally) the most relevant re-
sults, together with a set of ads. Similarly, in contextual
advertisement, the ads are displayed within a web page that
contains some specified terms. Usually, many advertisers
compete for a limited number of slots available for these
ads. This kind of advertising is continuously growing and
has become the main source of revenue for many of the par-
ticipants in this market.

Each advertiser places one bid, and the auctioneer de-
cides, based on the bids and other public or private parame-
ters, which ads will be published in which slot. The winning
advertisers will pay a price established by the auctioneer
each time a user clicks on their ads. Note that each of the
slots may have different value for the advertisers. Indeed,
there is an attention decay model which reflects the usual
pattern of the users’ behavior: people tend to click more
on ads positioned at higher slots. Consequently, advertisers
prefer slots with higher potential click-through-rate (CTR).
Nevertheless, the position has usually no direct influence
on the price paid (since all clicks are assumed to have the
same expected revenue for the advertiser, independently of
the slot where they originate).

The use of stochastic auctions for sponsored search has
been recently addressed in [10], [6] and [3]. Stochastic auc-
tions for the similar environment of multiple items with un-
limited supply have been also considered in [7]. We sum-
marize the main motivations for using them in place of de-
terministic ones:

o Stochastic auctions are less prone to vindictive and/or
strategic bidding.
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e The fact that anyone can win the auction contributes
to have a wider advertisers base, and therefore higher
revenue in the medium term (e.g., see [9], section 8.2,
and [4]).

e The increase in variety of the ads published brings
about advantages, such as improved user experience
and greater aggregate click through rates, due to better
coverage of the possible intent and needs of the user.

e In order to avoid leaving out ads with high potential
revenue —due to estimation errors, or simply lack of
information—, there is a need to alternate among ads
with high, small and unknown revenue expectation.
This is known as the explore/exploit trade-off [12].
Stochastic auctions, in which each bidder has some
probability of winning, provide an implicit way to im-
plement this trade-off [6].

e Stochastic mechanisms are in general less vulnerable
to fraudulent behavior (click fraud, [13]).

In [10], Meek, Chickering and Wilson propose a pric-
ing rule to make stochastic auctions incentive compatible
(truthful), and generalize Vickrey auctions [14], showing
that the advantages of stochastic auctions can coexist with
a pricing mechanism in which bidders have an incentive to
bid truthfully their respective values. Their results, how-
ever, only apply to auctions of single or multiple identi-
cal items. That setting is not general enough to cover the
typical sponsored search framework in which, as we men-
tioned before, it is normally assumed that many distinct
slots are auctioned simultaneously, each of them having its
own “position-CTR”, that is, a factor that reflects the de-
cay of users’ attention. This position-CTR is modeled by
a weight that is associated to each slot. Slots with higher
weights are preferable: any given ad will be more likely to
receive a click there.

One of the contributions of this paper is the first fam-
ily of truthful stochastic auctions for sponsored search, to-
gether with a significant (although not immediate) implica-
tion: a unified mechanism generalizing the stochastic auc-
tions of [10] to multiple-distinct-slots auctions, and the de-
terministic laddered auctions of [2, 5]. Laddered auctions
are defined for certain deterministic allocation mechanisms
(based on ranking functions), that we extend to a broader
class. We also present a procedure which transforms any
stochastic auction into an equivalent auction (in terms of
expected revenue of the auctioneer and each of the bid-
ders) where the price charged to each bidder is a determin-
istic function on the bids. In this way, a family of repre-
sentative or canonical auctions is defined, which we call
deterministic-price auctions. We then prove that, in the
same way that laddered auctions determine the only pos-
sible truthful pricing scheme for deterministic ranking al-
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locations, our mechanism is unique within the family of
deterministic-price auctions. This leads to a general and
purely arithmetic characterization of all truthful auctions.
These contributions, as well as those in [10] and [2], may
be seen as consequences of traditional results in microeco-
nomics [8, 11] on how to design a truthful pricing rule given
a certain allocation rule. Concisely, those very general re-
sults state that under certain restrictions of the type space
(the space of the offers that bidders can make), given a fixed
allocation rule and a payoff to the “last” bidder, there is a
unique pricing rule that gives a truthful mechanism. Our re-
sults, however, are derived specifically and explicitly define
techniques for the framework of sponsored search, which
has its own peculiarities (multiple different slots auctioned
simultaneously, payments subject to the occurrence of some
contingency, etc.). We provide constructive proofs and de-
fine all technical details needed in order to use them in prac-
tice, and instantiate them in that particular world.

Another contribution of our work is a framework that,
given any allocation mechanism, derives a truthful auction
for sponsored search. We explore and evaluate some tech-
niques to derive auctions for sponsored search given some
simpler mechanism. This provides some insight and tools
for further research in this direction. In particular, we show
how to obtain a truthful auction for multiple distinct slots
starting from a stochastic allocation scheme for either a sin-
gle slot or multiple identical slots. In contrast with pre-
viously known truthful auctions, some of the auctions we
propose do not need the values of position-CTRs in order to
be implemented. In fact, while there is some consensus on
the decay model followed by sponsored search, the actual
parameters may be unknown, or vary across search terms.
The resulting scheme, however, may achieve lower social
welfare compared to an hypothetical one with knowledge
of those values.

Finally, we present a drawing algorithm that provides an
assignment of slots to bidders according to any set of ratio-
nal probabilities.

In order to round up the introduction, we briefly mention
other relevant recent work on stochastic auctions. Gold-
berg, Hartline, Karlin, Saks and Wright [7] address the
question of designing stochastic competitive truthful auc-
tions (i.e. auctions with provable revenue guarantees) for
identical items in unlimited supply. Abrams and Gosh [1]
follow this line, extending those ideas to sponsored search,
proving that it is necessary to renounce to truthfulness to
achieve competitiveness. A bidding heuristic in which small
random perturbations are introduced to the bids to avoid cy-
cling is considered in [3]. The result is that the heuris-
tic converges in first- and second-price auctions to interest-
ing equilibria in which bidders “share” items in a certain
way. Finally, [6] introduces a family of stochastic allo-
cation mechanisms whose aim is to increase diversity and
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avoid some classes of fraud, while not losing revenue sig-
nificantly.

2. Assumptions and notation

The setting we consider involves a finite number, n, of
risk-neutral bidders that compete for k slots. No bidder is
allowed to win more than one slot. We assume that the num-
ber of slots is not greater than the number of bidders, that
is, k < n.

We assume, as it is generally the case in the literature [2,
3,5, 6], that the CTR can be separated into two factors, one
advertisement-specific, the ad-CTR and the other position-
specific, the position-CTR. This is called the “separability”
of the CTR [2]. The ad-CTR of advertiser ¢ will be denoted
by ¢;. Each slot j has an associated weight w;, which may
be interpreted as the click probability associated with the
slot, or equivalently, the position-CTR. Thus, the expected
number of clicks that ad ¢ appearing in slot ;7 will receive
is exactly w;c;. For convenience, we assume without loss
of generality that the weights are normalized in such a way
that 1 = wy; > we > ... > wy.

We mainly follow the notation of [10]. In that article, all
the auctioned items are equal, which corresponds to the case
where w1 = we = ... = wi, = 1. The non-negative real-
valued bids are denoted by b1, bs, . . ., b,, which we shorten
by b. Finally, p;(x) denotes the probability that bidder i
wins exactly one item when bidding x; while this func-
tion clearly depends on by,...,b;—1,b;41,...,b,, we omit
these bids in the notation, hoping to make our presentation
easier to follow.

For an allocation rule following probability functions
pi, [10] defines the condex pricing rule for the auction
as follows. The per-click price for bidder ¢ is p;(b) =
[ dpi(a)

pi(bi)
pectation: the price charged to bidder ¢ is the expected value
of her minimum winning bid given that she won the auction
by bidding b;.

As with the probability functions p;, we will abuse no-
tation and denote by ;(b;) the price per click charged to
bidder ¢ when bidding b;, omitting the bids of the other par-
ticipants whenever they are fixed in the context. It is shown
in [10] that the auction just described is incentive compat-
ible (resp. strictly incentive compatible) if the functions p;
are non-decreasing (resp. strictly increasing). For the re-
mainder of this paper we refer to this result as the “MCW
Theorem”. Finally, each bidder ¢ has a private value v;, re-
flecting how much a click on her ad is worth for her.

. The name condex is short for conditional ex-

Due to space limitations, some of the proofs of the The-
orems are presented in Section C of the Appendix.
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3. Deterministic-price auctions

In a stochastic auction, the allocation rule, the price or
both may be (independent or correlated) random variables.
This implies, for example, that any given bidder may be
charged different prices per click depending on which slot
is assigned to her, but also the price she is charged for a click
in the same slot could be a random variable. Examples of
such auctions are given in [7], where even if all the auc-
tioned items are identical, the price to be paid is determined
in each opportunity as a result of some coin tosses.

We call the auctions where the price charged to each
bidder follows deterministically from the set of bids
deterministic-price auctions. Note that in a deterministic-
price auction the slot allocated to any bidder is still a ran-
dom variable.

Deterministic-price auctions are interesting because,
apart from being easier to understand by the users, they are
more predictable and auditable. Indeed, even if it may be
unknown where an ad will be displayed, or whether it will
be displayed at all, the price that will eventually be paid for
a click is always known in advance. As mentioned in the
introduction, sponsored search auctions used nowadays are
deterministic-price.

We now show how to transform any auction into a deter-
ministic-price auction without changing its allocation rule
or its expected revenue, neither for the advertisers nor the
auctioneer. This in turn implies that if this transformation
is applied to a stochastic truthful auction it gives an “equiv-
alent” stochastic truthful auction that is also deterministic-
price. Instead of charging random prices, we can charge
deterministically the expected price of each bidder, which
yields the same result in expectation. Later on we make
use of this procedure in the characterization of all truthful
auctions for sponsored search.

Let A be a stochastic auction and x be bidder i’s bid.
We denote by M;(x) and W;(x) the random variables rep-
resenting the price that bidder ¢ will pay if her ad is clicked,
and the weight of the slot allocated to her, respectively.

The expected amount that bidder ¢ will pay per impres-
sion is given by the expression E[M,;(z)W;(x)¢;] (recall
that ¢; is ¢’s ad-CTR). Since ad 7’s probability of a click
in any impression is E[W;(z)c¢;], it follows that bidder i’s
expected price per click is

_ 0 if E[W;(z)] =0
fii(w) = {

EMi@)Wi(@)]  oherwise.

E[W;(z)]

Now we can define D(A) as the auction with the same
allocation rule as A, and pricing rule ;. It is clear that
D(A) is a deterministic-price auction.

Since the expected revenue of any auction is the sum
over all bidders of their expected price per click times their
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probabilities of a click O, ; E[W;(z)]c;), D(A) pre-
serves the auctioneer’s expected revenue.

Likewise, the expected revenue per click of bidder ¢ un-
der any auction is given by her valuation minus her expected
price per click, that is, v; — 71, E[W;(x)]. Thus, D(A) pre-
serves the expected revenue of each bidder. We record these
two facts in the following lemma.

Lemma 1 The expected revenue of the auctioneer under
auctions A and D(A) coincide. The expected revenue of
each of the bidders under auctions A and D(A) coincide as
well.

Lemma 1 implies that D(A) preserves desirable properties;
e.g., truthfulness.

4. Truthful stochastic auctions for distinct slots

We turn now into the design of truthful stochastic auc-
tions for sponsored search. We will show necessary and
sufficient conditions on the allocation rule for the existence
of a truthful auction, and provide a mechanism to compute
its pricing rule.

When the weights of the auctioned slots are equal, an
allocation rule is given by the set of probability functions
pi(x). Recall that p;(x) is the probability that bidder ¢ is
allocated one (any) slot. Accordingly, when slots have po-
tentially different weights, an allocation mechanism follows
implicitly from a set of functions p] (x), each denoting the
probability that bidder ¢ wins slot j when bidding x. The
mechanisms we consider must ensure that each slot is as-
signed to some bidder, that is, >, p!(b;) = 1 for all .

Given an allocation rule as a set of probability functions
p!, we define ¢; () Z;C:l w;pl (), the expected posi-
tion-CTR bought by bidder 7+ when bidding = (in terms of
the notation introduced in the previous section, the random
variable W;(x) has value w; with probability p(z), and
gi(x) = E[W;(2)]). In this context, we define the condex

_ Jote dai(@)
qi(bi) -

pricing for the auction by ;(b)

Theorem 1 If an auction for multiple distinct slots has a
non-decreasing (resp. strictly increasing) expected posi-
tion-CTR and the corresponding condex pricing rule, then
the auction is incentive compatible (resp. strictly incentive
compatible).

In the next theorem we show that requiring a non-
decreasing (resp. strictly increasing) expected position-
CTR is a necessary condition in any incentive-compatible
auction. This justifies the preconditions required by Theo-
rem 1. Something similar holds for identical items in unlim-
ited supply [7], and for the premise of the MCW Theorem.
All these results may be seen as variants of Myerson’s re-
sults [11], as they establish some form of monotonicity of
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the allocation function as a necessary and sufficient condi-
tion for any incentive compatible mechanism.

Theorem 2 Any incentive compatible (resp. strictly incen-
tive compatible) auction requires a non-decreasing (resp.
strictly increasing) expected position-CTR function.

Table 1 in Appendix B shows an example of an applica-
tion of the condex pricing rule to one allocation function.

Theorem 1 generalizes two well-known pricing mech-
anisms which create truthful auctions when coupled with
their corresponding allocation mechanisms.

The first one is the MCW Theorem, which considers the
special case where all auctioned items are equal, that is,
1 = w = wy - = wyg. Of course this yields that
qi(z) = Z?Zl w;p] (x) Z?Zl p] (x), which may be re-
garded as bidder ¢’s probability of winning exactly one item
(since they all have the same value, there is no need to dis-
tinguish them). It is clear that this is exactly p;(z), and since
the price expression in both cases coincides, it follows that
Theorem 1 is in fact a generalization of that result.

The second result we generalize refers to deterministic
auctions.

4.1. Deterministic auctions

The most frequently used family of deterministic auc-
tions ranks the ads according to ranking functions f;(x),
which assign “ranking points” to bidder %, considering not
only her bid z, but also some potentially relevant properties
of 7 (e.g., +’s ad-CTR). The top-ranked ads are then assigned
to the slots, higher ranked ads to slots with higher position-
CTR. We call these auctions deterministic ranking auctions.

We assume that each f; is non-decreasing and that, with-
out loss of generality, bidders are ordered in such a way that
In(br) > frnt1(bnt1). Now we define an inverse-like func-
tion f; ' (y) as the minimum amount bidder i needs to bid
in order to obtain at least y ranking points, that is,

F7 () = inf({zfi(z) > y}).

Note that when f; is bijective, f; ' is effectively its inverse.
Given these ranking functions f;, and setting w; = 0 for
j > k, we define the extended laddered pricing for bidder i:

1i(bi) = Z wfi_l(fj+1(bj+1))~

k
wj
j=

1
Theorem 3 If a deterministic ranking auction for multiple
distinct slots has a non-decreasing set of ranking functions

and the corresponding extended laddered pricing rule, then
the auction is incentive compatible.

Proof: Deterministic auctions may be seen as stochastic
auctions in which probabilities are either 0 or 1. First,
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for each bidder ¢ we define the other bidders’
S1yee-ySn—1 by

s :{ Jn(br)
" frt1(brgr)

Now we can define p/ as needed in Theorem 1: !

scores

forh=1,...,i—1
forh=14,...,n—1.

) 1 lfj:]. andfi(x)>51
pl(x)=4¢ 1 ifj>1 ands;j_1 > fi(z) > s,
0 otherwise.

Then, the expected position-CTR defined in Theorem 1 be-
comes

wy if fl(l‘) > 51
W if Sj—1 > fi(l‘) > 85
0  otherwise.

qi(x) =

Note that if f; is non-decreasing, then g; is non-decreasing
as well. Moreover, since ¢; is constant in all but a finite
set of points (the set {f; '(s1), ..., f; *(sn—1)}) and f; !
is non-decreasing by definition, u; defined in Theorem 1
becomes

1 bs
pb) = = /0 v dgi (@)

= 1 Z it

Wi Gl <fii))
n—1
Jj=t

k
= Y I (i),

— Wy
j=i

(s5) (wj — wj+1)

Wi — Wil 1
%f} (s5)

where the first equality arises directly from the definition of
the Riemann-Stieltjes integral. By Theorem 1, the resulting
auction is incentive compatible, which is what we wanted
to prove. ]

A practical consequence of this result is that the pricing for
deterministic cases has a simple and easy to compute for-
mula (no integrals involved), provided that we are able to
compute the inverse-like function, which is usually the case.

Theorem 3 generalizes the result in [2], which gives a
pricing mechanism for deterministic auctions for potentially
different slots. Concretely, [2] shows that a deterministic
auction that ranks bidders according to scores of the form
u;b; is indeed truthful if the price paid for a click on ad ¢ is

Zk: CTR;; — CTR; ;1
CTR;,

j=i

Wi
j+1

- bj+l’
(2

I'This formula is not absolutely precise when ties are possible (although
the theorem still holds true for those cases), yet taking this small liberty
yields a much cleaner proof.
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where CT' R; ; is the CTR of ad ¢ when placed in slot j. The
same can be proved using Theorem 3 with f;(b;) = w;b;,
because under the separability assumption CTR; ; = c;wj,
where ¢; is the ad-CTR of ad i. It follows immediately that
the expressions for the price coincide.

5. Characterizing truthful auctions

Given the importance of truthfulness in auction theory,
having a characterization of truthful auctions is highly desir-
able. It may be useful for both testing existing mechanisms
or developing new ones, as well as for deriving properties of
truthful auctions. In this section, building upon our results
on sections 3 and 4, we provide such a characterization.

In Theorems 1 and 2 we have shown that monotonicity of
the allocation rule is a necessary and sufficient condition for
the existence of a truthful auction. We now show that, given
such an allocation rule, the condex pricing rule is the only
rule that makes the auction truthful and deterministic-price.
Moreover, we show that the condex auction is particular in a
stronger sense: for any truthful auction, the expected price
per click must coincide with the condex price. This com-
pletes a strong and purely arithmetical characterization of
truthful auctions for sponsored search in terms of the con-
dex pricing rule.

Theorem 4 Given an allocation rule with non-decreasing
expected position-CTR, there exists exactly one pricing such
that the auction is truthful and deterministic-price.

Proof: Note that, whenever the expected position-CTR is 0
the price is irrelevant, so we set the price to 0 in those cases.
As we saw in Theorem 1, the condex pricing makes the auc-
tion truthful and deterministic-price, so, it only remains to
prove uniqueness. Note first that any pricing function p cor-
responding to a truthful auction must satisfy

p(z) <z forallz > 0. (1)
Let ¢ be an arbitrary bidder and assume that the bids of the
others are fixed. For a bid x of bidder ¢, let g;(z) be her
expected position-CTR; let p;(x) and v;(x) be two pric-
ing rules, both yielding truthful auctions. By hypothesis the
auction is truthful, so for all v > 0

v € argmax(v— pi(z))g(z), and

v € argmax(v—v;(z))q(z) 2
x

By way of contradiction, let as assume that u; and v; are

different; without loss of generality we may assume that

there exists a positive ¢ such that
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Let ¢ be such that
wi(t) —vi(t) >c>0and t/c> [t/c].

Define k by

k =max{h €{0,...,[t/c]}: pi(t—hc)—vi(t—hc) > ¢}

Now, k = |t/c| implies u;(t — [t/c] ¢) > c, but this is not

feasible due to (1) and ¢t — [t/c] ¢ < c¢. Thus, k < |t/c],

implying that

wi(t — ke) —vi(t —ke) > ¢
pi(t — (k+1)c) —vi(t — (E+1)c) < c

“
(&)

Define a = t—kc. Note that ¢;(a) > 0 since by (4) p;(a) >
0. Now,

(a—pila—c))g(a—c)

(a — pi(a))gi(a)

< (a—c—wi(a))gi(a)

< (a—c—vi(a—c))gi(a—rc),

IN

where the strict inequality is due to (4), and the other in-
equalities are due to (2). The strict inequality implies that
gi(a — ¢) must be non-zero, and since no value of ¢; can be
negative, we may cancel that factor from both ends:

a—pila—c)<a—c—vi(a—rc).

However, this contradicts (5), and makes (3) false. O

Corollary 1 Any truthful deterministic-price auction is a
condex auction.

The combination of previous results yields the following
characterization of truthful auctions for sponsored search.

Theorem 5 An auction is truthful if, and only if, for every
set of bids the expected price per click of each bidder is the
condex price.

Proof: Let A be an auction. From lemma 1 A is truthful if,
and only if, D(A) is truthful. Since D(A) is deterministic-
price, from Corollary 1 D(A) is a condex auction and by
definition its pricing rule is the expected price per click of
A. Since the allocation rule of A and D(A) coincide, their
condex prices also coincide. g

6. From one slot to distinct slots

An allocation mechanism reflects an intention on how a
prize should be distributed among the bidders. However,
when the prize consists of multiple distinct objects, and no
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bidder can be assigned more than one of them, not every
intention may be implemented directly. For instance, if two
identical slots are being auctioned, no bidder can be as-
signed more than 50% of the prize, no matter how much
she bids. It is useful then to implement a way to emulate
any single-slot distribution philosophy under the multiple
distinct slots case. Note that although [10] deals with mul-
tiple identical slots, the only examples of allocation rules
given therein are for the single-slot case, that is, they do not
provide such an implementation.

We present here a family of allocation mechanisms for
distinct slots that satisfy the premises of Theorem 1 and
thus, together with the condex pricing define incentive com-
patible auctions for this scenario.

These mechanisms assign the first slot according to the
basic single-slot probability, and each of the following slots
according to the re-scaled probabilities of the remaining
ads. Formally, if the single-slot allocation mechanism is
represented by the probability functions p;(x),. .., p,(x)
(which give the probability of bidder ¢ winning the auction
when bidding x, assuming all other bids are fixed), then the
multislot mechanism is given by the algorithm in Figure 1.
The rescaling algorithm works for a large family of single-

set S ={1,...,n}

forj=1tok
randomly pick i € S with prob. p;(b;)/ > ;¢ P;(b;)
assign ad ¢ to slot j

set S =5\ {i}.
Figure 1. The rescaling algorithm

slot allocation mechanisms, wide enough to cover the ones
used in practice and others present in the literature. We will
call a single-slot auction consistently-monotone if, and only
if, whenever a bidder raises her bid by any amount while
the rest of the bids are fixed, her probability of winning the
auction does not decrease, and the probability of any other
bidder of winning the auction does not increase. In partic-
ular, note that this holds for all deterministic and stochastic
auctions described earlier in this work and the cited bibli-
ography.

Theorem 6 If an allocation mechanism for the single-slot
case is consistently-monotone, then its extension to a mul-
tislot framework via the rescaling algorithm gives an allo-
cation system for which the expected position-CTR is non-
decreasing.

Corollary 2 If an allocation mechanism for a single slot is
consistently-monotone and it is extended with the rescaling
algorithm and the corresponding condex pricing rule, then
the resulting auction is incentive compatible.

In Appendix B we give an example of an application of
the rescaling algorithm and Corollary 2.
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7. Linear extensions from single-slot to uni-
form multislot

The results in the previous sections provide a very gen-
eral way of defining truthful auctions for multiple dis-
tinct items given a single-item probabilistic allocation rule.
However the pricing rule arising from it is usually cum-
bersome and difficult to calculate, as it requires the calcu-
lation of potentially complex conditional probability func-
tions, and their corresponding derivatives and integrals (fol-
lowing the definition of the condex pricing rule). We ex-
plore now other ways of extending a single-slot allocation
rule whose pricing mechanism may be handled in a much
simpler way.

We will first see how to use a single-slot allocation rule
to generate multislot allocation and pricing rules for identi-
cal slots. These in turn can be used as input for a procedure
described in the next section, which allows to jump from
a multiple-identical-slots auction to one with multiple dis-
tinct slots. These two tools together conform a very simple
way of extending a single-slot allocation mechanism to get
a truthful auction for multiple distinct slots. As we will see,
the goodness of this extension in terms of the revenue at-
tainable by the auctioneer will depend on some properties
of the original probability functions.

Let p; be a probability distribution for one slot, that is,
p;(x) is the probability that bidder ¢ wins the auctioned
slot when bidding z. Recall that there are n bidders and
k slots, and that we assume that £k < n. It is clear that
Z:’L:l pi(bi) = 1.

Now we need to define a probability function p; for the
identical multislot case such that

> pi(bi) =kand 0 < p;(b;) < 1Vi (6)
i=1

Recall that the pricing rule may be hard to calculate for
some underlying probability functions, due to the integrals
involved. Thus, we would like to be able to use “nice” prob-
ability functions of our own choosing. In Appendix A, we
present an algorithm that selects the ads to be assigned to
the slots according to any set of rational probabilities satis-
fying (6). Consequently, we focus now on designing such
probability functions.

We consider linear extensions, that is, functions of the
form p;(z) = ap;(x) + ¢, where a and ¢ are constants to
be defined. From (6) follow necessary and sufficient con-
ditions on a and c for the feasibility of p;. First, it follows
that k- = Y0, pi(bi) = oy (aps(bi) + ¢) = a + ne, so
(constant-coefficient bound)

c=(k—a)/n. )

The fact that p;(b;) has to be a probability allows us to de-
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rive another bound, which we call linear-coefficient bound:

n—=k k
nsup(p) 11— ninf(p») - ®

Since a < 0 yields a non-increasing probability (as opposed
to what is needed, a non-decreasing probability), we assume
that a > 0. Now, the condex pricing of the resulting auction
becomes

a§min<

/Obi x dp;(z) ) /Obi x d(ap,(z) + )

uilhe) = pi(bi) ap;(b;) + ¢
b;

_ o vano _ am(b)pib)

ap;(bi) +c¢ ap;(b;) + ¢’

and the expected revenue E for the auctioneer is

E = ) cpilbi)mi(b)
=0
= 2l TG
= a)_ cp(bi)i(bi) = oF, ©)
1=0

where ¢; is the ad-CTR of ad 7, and 7i; and E are the pricing
rule and revenue of the original auction, respectively. We
note that we have assumed in (9) that the position-CTR for
each of the slots in the multislot framework is the same as
the one in the single-slot setting. Were this assumption not
realistic, we could easily adjust the previous result since,
under the separability assumption, the difference is only an
appropriate constant.

From (7), (8) and (9) immediately follow necessary and
sufficient conditions that let p, be extended to a multislot en-
vironment generating greater income, maintaining the truth-
fulness and with no need of complex calculations. We sum-
marize these results in the following theorem.

Theorem 7 If a stochastic auction of a single slot uses a
condex pricing rule and is extended linearly to a stochastic
auction for multiple identical slots, respecting both linear-
coefficient and constant-coefficient bounds then the follow-
ing holds.

o The condex pricing rule of the extension is 1— m
times the price in the original single-slot auction,
where a and c are the linear and constant coefficients,
respectively.

e The expected revenue for the publisher is a times the
one in the single-slot auction.
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o The resulting auction is incentive compatible.

From the previous results also follows an upper bound on
the publisher’s revenue.

Corollary 3 If a single-slot auction is extended with a lin-
ear extension, then the revenue of the resulting auction is
not more than W times the revenue of the original
auction.

As for unbounded single-slot probability functions, we es-
tablish a negative result:

Corollary 4 If an auction for a single slot with no upper
bound on the probabilities of one bidder is extended via
a linear extension, then the auctioneer’s revenue will de-
crease.

8. From uniform to weighted multislot auctions

As we mentioned in the previous section, here we present
a procedure for extending, in a simple way, a multiple-
identical-slot auction to a multiple-distinct-slot auction.
The extension can be applied even without knowledge of
the decay model, potentially at the cost of suboptimal so-
cial welfare, but the question is whether the optimal social
welfare is achievable at all since, despite extensive research
done in the area of sponsored search, it remains challenging
to establish the “right” decay model (i.e., the correct values
of the w;’s). Moreover, it may vary from one search term to
another, or even change in time for the same keyword.

A uniform multislot auction consists of an allocation
mechanism and a pricing rule. The pricing rule may be de-
rived from the probabilistic allocation functions, using the
MCW Theorem. Let us denote by A the existent alloca-
tion mechanism that selects a subset of k ads to be placed
in the available slots, and p; the probability functions that
represent that mechanism.

We develop a simple extension of the multiple-identical-
slots mechanism for the multiple-distinct-slots scenario: se-
lect a set S of k ads using the allocation mechanism A, and
then assign them uniformly at random to the k slots. The
condex pricing for the resulting auction is the same as the
condex pricing for the original auction, as the following the-
orem states:

Theorem 8 If an auction of identical slots has a non-
decreasing (resp. strictly increasing) allocation rule and its
corresponding condex pricing rule, then the auction of dis-
tinct slots resulting from applying the random-permutation
algorithm to the identical-slot auction and charging the
same price is incentive compatible (resp. strictly incentive
compatible).
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This algorithm can be applied to multiple-identical-slots
auctions that were derived from single-slot auctions (as
shown in the previous section). Summarizing, we have de-
vised a method for creating an auction for multiple distinct
slots given one for a single slot.
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A. Efficient drawing of sets with rational prob-
abilities

Here we present a drawing algorithm that will distribute
k slots among n bidders without repetition and following ra-
tional probabilities p; such that >, p; = k. Let T =D
where n; and d; are coprime. Let M = MC’M(dl, e ody)
and a; = i i M, which is clearly an integer. Note that
ZZL:l a; = ME.

Let A be a matrix of M rows and k columns. Fill A with
a1 1s, ag 2s, etc, starting from the upper left cell and going
downwards. When a column is full, go to the uppermost
cell of the column to the left. Now, choose a random row of
the matrix. The numbers in it are the indexes of the chosen
ads. Since each a; is no greater than M, no number appears
twice in the same row, so this is a valid choice. Also, ad
1 appears in a; out of M rows, so its probability of being
chosen is §& = Z?

This idea can be implemented efficiently by the algo-
rithm given in Figure 2, which is a symbolic calculation of
the explained idea.

set ¢ = a random integer between 0 and M — 1

set R=0,d=0

fori=1tok
setd =d+a;
ifd<ec<dord<c+M<dset R=RU/{i}
setd =d" mod M

return R

Figure 2. A drawing algorithm

B. An example

The following is an example of an application of the
rescaling algorithm and Corollary 2. Let the initial prob-
abilities for a single slot be proportional to the bids, that is,
pi(b;) = ﬁ We extend those probabilities to a scenario
with k& = 2 slots, weights w; = land wy = 1/2,andn = 3
bidders. We only develop the formula corresponding to bid-
der ¢ = 1, the formulas for the other bidders are symmetric.
The original condex pricing for the single-slot case is given
in [10] by

pa(b) =
(b + bs) KH

b2 + b3 b1
In(1 1f.
) ()
When we apply the rescaling algorithm we get the prob-
ability function

b1 b2 b3
b 1 .
ai(by) = b1 + b2 + b3 ( +2(b1+b3)+2(b1+b2)>
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We are then able to compute the corresponding price using
the condex rule, obtaining

b2+b1 + b3+b + b2 In(bz + b1) + b3 In(bs + b1)
2q1(b1)

Table 1 presents the resulting probabilities, prices and ex-
pected revenue for the auctioneer, for different combina-
tions of bids in both scenarios. We observe that the expected
revenue with two slots is higher in the cases in which the
bids are similar, decreasing as they set apart.

pi(b1) =

C. Proofs

C.1. Proof of Theorem 1

Proof: Letw = Z’;zl wj and §;(x) = ¢;(x) /w. Clearly, ¢;
is non-decreasing (resp. strictly increasing) if ¢;(x) is non-
decreasing (resp. strictly increasing) as well. Moreover, it
is easy to see that:

Zqz b)**zzwjpz

i=1 j=1

k n
j:l i=1
Thus, since ¢; is a probability function that fulfills the
premises of the MCW Theorem, a condex price fi;(x) can
be defined, implying that

(vi — fi;(7))Gi ()

is maximized when x = v;.

Simple calculations show that p; = fi;. Recall that the
revenue of the advertiser is computed as the per-click util-
ity times the expected CTR, while the expected CTR is the
product of the ad-CTR and the position-CTR. Thus, by let-
ting c¢; be the ad-CTR of ad i, this revenue is

10)

Mx

C’ijp - ,ui(‘r))qi (I)CZ
j:l
= (vi — fi(2))Gi(z)we;,  (11)
and since (11) is a constant multiplied by (10), it is also
maximized when z = v;. O

C.2. Proof of Theorem 2

Proof: Let us assume that a given auction has g; as its ex-
pected position-CTR function and is in fact incentive com-
patible. By definition of incentive compatibility, letting ¢;
and v; be the ad-CTR and private value of ad ¢, respectively,
for any valid bid x:

= pi(x))
= pi(x))

qi(’Ui)Ci(Ui - .UL(UL))
qi(vi) (vi — pi(vi))

qi(x)ci(v;
() (v;

IN A
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bid exp. CTR 2 slots prob. 1 slot price 2 slots price 1 slot rev. 2 slots | rev. I slot

b1 [ b3 Q1 q2 q3 p1 p2 p3 J5 B2 B3 J5 B2 B3

1.00 1.00 1.00 0.50 | 0.50 | 0.50 | 0.33 | 0.33 | 0.33 | 0.39 | 0.39 | 0.39 | 0.43 | 0.43 | 0.43 0.58 0.43
1.00 | 1.00 2.00 | 0.42 | 0.42 | 0.67 | 0.25 | 0.25 | 0.50 | 0.40 | 0.40 | 0.65 | 0.45 | 0.45 | 0.77 0.77 0.61
1.00 | 2.00 2.00 | 0.33 | 0.58 | 0.58 | 0.20 | 0.40 | 0.40 | 0.43 | 0.70 | 0.70 | 0.46 | 0.83 | 0.83 0.96 0.76
1.00 | 10.00 | 10.00 | 0.09 | 0.70 | 0.70 | 0.05 | 0.48 | 0.48 | 0.48 | 2.43 | 2.43 | 0.49 | 3.94 | 3.94 3.46 3.77
0.10 0.10 1.00 0.30 | 0.30 | 0.91 | 0.08 | 0.08 | 0.83 | 0.04 | 0.04 | 0.16 | 0.05 | 0.05 | 0.23 0.17 0.20
0.10 0.10 10.00 | 0.25 | 0.25 | 0.99 | 0.01 | 0.01 | 0.98 | 0.04 | 0.04 | 0.37 | 0.05 | 0.05 | 0.60 0.38 0.59

Table 1. Example for different bid combinations for n = 3 bidders, £ = 1 vs. 2 slots with w; = 1 and

w2:1/2

So, if v; is any given value v,

gi(v+e)(v—pi(v+e) < qi(v)(v—pi(v), (12)
but also, if v; is v + €, then
G()(v+e—pi(v) <gi(v+e)(vt+e—pi(v+e). (13)

Finally, adding up (12) and (13), and assuming € > 0 yields
¢i(v) < qi(v +e).

The proof in the strictly incentive compatible case is
analogous. O

C.3. Proof of Theorem 6

Proof: Let us consider a fixed bidder ¢ for the entire proof.
Given a subset C' of {1, ...,n} and a bid = of bidder ¢, let us
denote by R(C, x) the probability that the elements of C are
assigned to the first |C| slots in any order by the rescaling
algorithm (while all other bids are fixed). By definition, for
each non-negative integer m,

Z R(C,z) =1

C:|Cl=m

(14)

(the sum of the probabilities of all subsets of a given size is
1, because exactly one subset is always chosen and they are
all disjoint choices).

First, we show that for any subset C of {1,...,n} \ {i},
when C is fixed, R(C, x) is non-increasing. We prove it by
induction on |C.

For the base case with |C| = 0, there is only one set C' =
() and by definition R(@,z) = 1 is constant and therefore
non-decreasing. In the inductive step, assuming R(C, z)
is non-increasing for sets of size m — 1, we will show the
same holds for sets of size m. Let r}, () be the basic single-
slot probability of bidder & when bidder ¢ bids z (i.e., the
probability that bidder h wins the first slot). By hypothesis
7}, is non-increasing if i # 4. Also, by definition of R:

ri(x)

ceC\{h} re()

R(C2) = 32 RO\ (A}, )=

heC

s)

where the fraction represents the probability of h being se-
lected in the m™ iteration, given that the bidders in C'\ {h}
were selected in the first m — 1 iterations.
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R(C \ {h},x) is non-increasing by inductive hypothe-
sis; r,(z) is non-increasing because & € C and by hy-
pothesis that means 1 # i3 and 1/(1 — X con 1y 7e())
is non-increasing because as each 7. is non-increasing,
>_cec\{n} Te(2) is non-increasing as well. Therefore, the
sum in (15) is non-increasing.

Now, let S;(z) be the probability that bidder ¢ gets any
of the first j slots when bidding x. By (14) it follows that

2 2

C:|C|=jnicC C:|C|=jnigC

Si(x) = R(C,z)=1- R(C,x)

Since all terms in the sum are non-increasing, S; () is non-
decreasing. _
Also, by definition S;(z) = S;_1(x) + p!(x), so

qi(x) Z w;pl (z) = Z w; (S;(x) — Sj-1(w))

Z w;Sj(z) — Z w;Sj-1(z)

k—1
Z Si(x)(w; — wj+1) + weSk(x) — wiSo(x)

and all terms in the last expression are non-decreasing
(since Sp(x) = 0, the last one is constant), so it is proved
that ¢; () is non-decreasing. O

C.4. Proof of theorem 8

Proof: It is easy to see that with this allocation mechanism

p!(z) = p;(x) /k for all j. The premises of Theorem 1 hold
because

E?:l wj
k

" pila)
ij k

Jj=1

k
gi(x) = Y wipl(z) = =pi(x)
j=1
is clearly non-decreasing (resp. strictly increasing).
If we apply the pricing of Theorem 1 we obtain an incen-
tive compatible (resp. strictly incentive compatible) auc-

k .
tion. Moreover, since # is constant, the resulting
pricing rule equals the one obtained by applying the con-
dex pricing rule to the function p;. 0
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