
Two-dimensional distributed inverted files

Esteban Feuerstein1, Mauricio Marin2, Michel Mizrahi1, Verónica Gil-Costa2,
and Ricardo Baeza-Yates2

1 Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina.
2 Yahoo! Research Latin America, Santiago, Chile.

Abstract. Term-partitioned indexes are generally inefficient for the eval-
uation of conjunctive queries, as they require the communication of long
posting lists. On the other side, document-partitioned indexes incur in
excessive overheads as the evaluation of every query involves the par-
ticipation of all the processors, therefore their scalability is not ade-
quate for real systems. We propose to arrange a set of processors in
a two-dimensional array, applying term-partitioning at row level and
document-partitioning at column level. Choosing the adequate number
of rows and columns given the available number of processors, together
with the selection of the proper ways of partitioning the index over that
topology is the subject of this paper.

1 Introduction

Inverted files [?] are used as index data structures to efficiently solve queries
upon huge text collections. An inverted file is composed of a vocabulary table
and a set of posting lists. The vocabulary table contains the set of relevant terms
found in the text collection. Each of these terms is associated with a posting list
which contains the document identifiers where the term appears in the collection
along with additional data used for ranking purposes. To solve a query, it is
necessary to get the set of documents associated with the query terms and then
perform a ranking of these documents in order to select the top-K documents as
the query answer. From the literature we can learn of a number of methods for
distributing the inverted file onto P processors or computers and their respective
query processing strategies [?,?,?,?,?,?,?,?]. Distributing an index consists of
splitting the document collection and/or the index itself among the computers.
There are different ways of doing this splitting, mainly variants of two basic
dual approaches: document-based partition (a.k.a local indexes) and term-based
partition (a.k.a global indexes). Variants of these two basic schemes have been
proposed in [?,?,?].

The ranking of documents can be performed upon either intersection or union
of posting lists. For queries requiring such intersection, the global indexes tend to
be inefficient as they require sending complete posting lists among processors. To
alleviate this problem, it has been proposed to concentrate together in the same
processor terms that usually appear together in queries, reducing the probability
of having to transfer posting lists. Different methods have been proposed in

[?,?,?]. On the other side, when using a local index, document IDs are assigned
to unique processors and thereby the intersection of posting lists does not require
communication. However, all processors must participate in the evaluation of
each query: as the number of processors grows, the overhead associated with each
query grows linearly, so the improvement in the throughput is not proportional
to the number of processors. The reason is that each active query being processed
is replicated P times on the whole set of P processors and, in each processor,
they demand the use of hardware resources which do not come for free in terms
of latency.

A natural idea to overcome the problems of these two approaches is to use a
two-dimensional scheme trying to benefit from the advantages of the two extreme
distributed indexes. The idea is to arrange a set of P = R × C processors
as a matrix of R rows and C columns, applying term-partition at row level
and document-partition at column level. In few words, the document collection
is partitioned in C sub-collections, each of which is allocated to a “column”
of R processors, which will hold the index of that collection in a term-based
partitioning. The point for conjunctive queries is the following: for any concrete
policy used to partition and group terms, the probability of co-residence of a
pair of terms of a query increases as the number of processors decreases, so the
communication cost tends to decrease with the number of rows of the matrix
(the optimal being an arrangement of one single row and P columns, that is
a normal document-partitioned system). At the same time, when the number
of columns increases, so does the overhead typical of local indexes, so one can
expect that there is an optimal configuration somewhere in between the extreme
approaches. The proposal of this paper is, therefore, to analyze the performance
of different configurations for a fixed number P of processors, ranging from P
rows and one column (term partition) to one row and P columns.

2 A two-dimensional partitioning index

The processors form a two-dimensional array of R rows and C columns; in one
of the dimensions (the rows) the index is seen as partitioned by terms, in the
other dimension (columns) as partitioned by documents. The document collec-
tion is partitioned therefore in C sub-collections, each of which is allocated to
a “column” of R processors, which will hold the index of that collection with
a term-based partitioning. This two-dimensional scheme brings about different
ways of evaluating a query. The one studied in this paper is to first distribute
the query among the columns (the processors that contain query terms in each
column) as with a local index. Then, at each column, the intersection must be
resolved as in a global index by invoking the processors of the column that hold
the required terms, and finally merging the results obtained at each column.

In the case R = 1, C = P (document partitioned index), each processor
holds the posting lists of the whole set of terms appearing in the documents
assigned to it. Conversely, when the index is term partitioned (R = P,C = 1),
the documents are considered as an indivisible package. As soon as we leave

these extreme cases to consider a 2D scheme with more than one row and more
than one column, the need appears of dealing simultaneously with term and
document partitions. The question that arises is: once that C and R are fixed,
how the two kind of partitions can be optimized? This question regards not only
which technique or criteria is used to optimize each of them but, and this is a
novelty specific to the two-dimensional partitioning of the index, how the two
partitions are combined. For example, the partition of the terms could be done
independently of how the documents will be partitioned. Or the terms could
be partitioned taking into account the information of the document partition.
Also we could partition first the terms and then the documents, and many other
possibilities. To make things more complex, in each of those schemes one can
use different algorithms for term and document partition, yielding an enormous
amount of possibilities. There is a wide literature regarding how these partitions
can be optimized (see for example [?,?,?,?,?,?]). The different trade-offs must
be evaluated upon a baseline cost model which we develop in the following. In
Section 3 we describe the particular algorithms we used to partition both terms
and documents.

Basic cost The processing of a query can be decomposed in a series of oper-
ations that are executed in different processors. These are the primitive oper-
ations such as broadcast or communication, list intersection, merging, ranking,
etc. Each of these operations has a cost, and their sum conforms the computa-
tion and communication cost of a query. In addition, each processor incurs in
a certain overhead due to hardware use, network access and system scheduling
tasks among others. The weight of these overheads in the total cost turns out to
be high, so it cannot be neglected. In a local index the number of participating
processors per query is much greater than in the global scheme.

In the following we will assume that a certain number q of queries are initially
presented at every processor and then new queries arrive as the system delivers
answers for previous queries. So, at every moment there are q ∗P live queries in
the system. In that framework, providing that a good load balance is obtained,
we can assume that the whole set of P processors can work in parallel, and there
will not be idle times. To simplify, from now on we will consider only two-term
queries of the form t1 ∧ t2. We will use the following notation:

– ti(x, y): Expected time employed by a processor to compute the intersection
of two lists of lengths x and y respectively.

– tm(x): Expected time employed by a processor to merge a set of lists of total
length x.

– tr(x): Expected time employed by a processor to rank a list of length x.
– I(x, y) : the expected length of the intersection of two lists of length x and
y.

– γ: time employed to transmit a unit of information from one processor to
another.

Let ` be the expected length of a posting list (considering all the files of the
system). We will assume that to prepare a result list of K results using a local

index distributed among P processor, each processor will send to the originator
of the query its best 2K/P postings and that the 2K results obtained that way
are, with high probability, enough to answer the query. Was that not the case,
another extra request would be generated for a subset of the processors, but we
ignore that in this paper.

Local Index: The sequence of tasks performed in parallel at each of the P pro-
cessors for a set of q queries, and their corresponding costs, can be described as
follows:

Action Cost

Broadcast the q queries of each processor to all other processors q(P − 1)γ

For each query two lists of expected length `/P are intersected qP ti(
`
P
, `

P
)

For each of the q ∗ P queries, the resulting lists are ranked qP tr(I(`
P
, `

P
))

For each query, send 2k
P

results to the originator of the query qP 2k
P
γ

For each query originated at that proc., merge the P lists received qtm(2K)

Global Index: Let `min be the expected length of the shortest among the two
posting lists of the terms of a query. Let α(X) be the probability of co-residence
of the two terms of a query given that the terms are partitioned in X processors.
With probability (1−α(P)) the query should be distributed among two proces-
sors, so we need to broadcast the two terms to the two processors holding them,
and the processor holding the shortest among the two lists send it to the other
one. With probability α(P) the two terms are co-resident in one processor, so
the query must just be sent to it. In both cases, the processing is completed by
intersecting the two lists, ranking the result and sending the best K elements to
the originator of the query. All this can be summarized in the following table.
Recall that we are assuming that q queries are submitted to each processor, so
the probabilities α(P) and (1−α(P)) can be interpreted as fractions of the total
number of queries.

Action Cost

(Non co-residence) Send the terms to their two processors (1 − α(P))q2γ

(Non co-residence) The shortest list is sent to the other processor (1 − α(P))qγ`min

(Co-residence) Send the two terms to one processor α(P)qγ

Intersect the two lists l qti(`, `)

Rank the resulting list qtr(I(`, `))

The best K elements of the resulting list are sent to the originator qKγ

2D Index: We will analyze this model assuming we have R rows and C =
P/R columns. The sequence of tasks to be developed at each processor (always
assuming q queries per processor) starts with the broadcast of the q queries to
each of the C columns (to a random processor at the column). The R processors
of each column must then resolve a total of qP queries, so each one of them
will hold expectedly qP

R = qC queries. So this part will be executed in parallel
by the C columns, and within each column by the R processors of the column,

therefore we can think that the P processors are working in parallel. In each
column the terms may be co-resident at the same processor (row) or not, with
probabilities respectively α(R) and (1−α(R)), so different tasks will be executed
for the corresponding fraction of the queries. After that, always at column level,
but with the C columns working in parallel, intersection and ranking of the lists
(q ∗ C queries at each processor). Finally, each column (actually, the processor
in the column that has computed and ranked the intersection) must send its
results to the originator of the query, that will merge the results.

Action Cost

Broadcast the q queries to a random processor in each column qCγ

(Non co-residence) Send the two terms and then send the shortest
list from one processor to the other one

(1 − α(R))∗
(qC2γ + qCγ`min)

(Co-residence) Send the two terms to their processors α(R)qCγ

q ∗ C intersections of lists of expected length `/C qCti(`/C)

q ∗ C rankings of the lists at each processor qCtr(I(`/C, `/C))

For each of the qC queries, send 2K
C

results to its originator qC 2K
C
γ

Merge the C lists of length 2K/C received in each processor qtm(2K)

Overhead To compute the real cost associated with a query we have to add to
the expressions developed in the previous section a fixed cost or overhead (that
we will denote as β). This will be counted for every processor participating in
a query. In a local index each query will have an overhead of P ∗ β. In a global
index the terms may be co-resident or not at each column, so the overhead may
be seen as a random variable with expected value (α(P) + (1 − α(P)) ∗ 2) ∗ β.
Finally, in the general 2D case with R rows, one or two processors participate at
each column so the expected value of the overhead is C∗(α(R)+(1−α(R))∗2)∗β.

3 Experimental evaluation

For term partition we used a term-clustering heuristic oriented to reducing com-
munication cost and at the same time maintaining the load balance of the system.
This heuristic, based on the one used in [?], tries to assign to the same machine
pairs of terms of high cost (a function of the relative frequency and length of
the shortest posting lists of its terms). We will refer to this heuristic as TCH.
The basic heuristic that we used for document clustering tries to group similar
documents (cosine measure) and assign them to the same processor. It starts
with a certain number of documents that are chosen initially as cluster centers.
These cluster centers are selected so that they are sufficiently different from
each other. Then we insert into each cluster the documents that are closer to
each cluster center. Finally, the clusters are assigned to the different machines
in a round-robin fashion [?,?]. We will refer to this heuristic as DCH. For docu-
ment partitioning we also consider a simple Random partition (DRH). The first
two-dimensional heuristics we considered were to partition terms and documents

independently, using TCH for terms and either DRH or DCH for the documents.
We will refer to these heuristics as 1.a and 1.b respectively.

Another family of heuristics consists in partitioning first the documents, using
either DRH or DCH, and then the terms using TCH separately for each column,
taking into account the documents that were assigned to each column (heuristics
2.a and 2.b respectively). Also by first partitioning documents we could use the
information of that partition to produce one single partition for the terms to
be used across all the columns. These heuristics will be referred to as 3.a (with
DRH) and 3.b (with DCH).

A different approach may be taken if we first partition the terms and then
the documents. Given as input an initial partition of the terms, the heuristic
4 tries to distribute the documents among the columns so as to minimize the
communication cost. We consider only pairs of non co-resident terms (as co-
resident pairs will not require further communication). The intuition behind the
heuristic is to try to minimize in two ways the lengths of the posting lists that
must be transfered: (a) separating in different columns documents that are not
part of the intersection of popular pairs, and (b) minimizing the length of the
shortest posting list at each column by increasing the variance of the lengths of
the lists. The (last) heuristic 5 constructs the partitions of terms and documents
simultaneously, considering pairs of queries one by one, in decreasing order of
cost. For each query, it decides whether to consider it to group together its terms,
or to separate the documents of their posting lists.

The final expression for the cost of a single query will be obtained by con-
sidering the computation and communication costs plus the overhead incurred
by every participating processor. For that, we need to adapt the values given in
Section 2 to an individual query instead of a set of q queries, getting a per-query
cost of:

Cγ + (1− α(R))(C2γ + C`minγ + 2Cβ) + α(R)(Cγ + Cβ) + (1)

Cti(`/C) + Ctr(I(`/C, `/C)) + C
2K
C
γ + tm(2K)

This formula is valid for the case in which the term partition is uniform across
all the columns (i.e. the two terms of a query are assigned to the same row at
each column), and therefore are co-resident or not uniformly in all the columns.

We did our experiments on two inputs: Collection 1 is a sample of the Chilean
web with ≈ 160K documents, Collection 2 contains a subset of ≈ 2M documents
of a 1.5TB sample of the UK’s web and ≈ 250K queries taken from a one-year log
of a major search engine’s site. We simulated and measured the performance of
every heuristic with different configurations on P = 256 processors. The number
of rows ranged from 1 (local indexing) to 256(global-indexing) using successive
powers of two.

For the simulation we defined particular costs for the different primitive
functions, based on benchmarking runs we did on the same collections. The
values are expressed relative to a base-line in terms of ranking time defined
as tr(x) = x. Intersection and merge operations require in average ti(x, y) =

min(x log(y), x + y)/4 and tm(x) = x/4 respectively. The values for β and γ
where chosen to achieve proper agreement with what we have observed using
two actual implementations of document- and term-partitioned inverted files for
disjunctive queries. We run experiments on the two indexes, in which the pure
global index resulted on average 20% more efficient than the pure local one, so
the values for β and γ where chosen so as to satisfy that relation.

The graphics in figure 1 summarizes the results of our simulation. It shows
total costs (processing+communication+overhead) as a function of the number
of columns, for the two collections. All the costs were normalized by dividing
them by the maximum cost, that occurs for all the heuristics when the number
of columns is 256 (i.e. when the 2D index becomes a simple local index). We
observe that an important improvement in the cost is achieved by arranging the
256 processors in a two-dimensional array, of 8× 32 or 4× 64, for all heuristics.
Therefore, the main claim that an improvement can be obtained with a 2D index
against the classical local and global indexes is verified.

It may be observed that there is not a big difference in the performances of
the heuristics, although heuristics 4 and 5 behave consistently better than the
others in almost all configurations (the latter being a bit better in general). Note
that heuristics 4 and 5 cannot be applied for simple local and global indexes.
These seem to be the only heuristics that take advantage of the two-dimensional
structure and the possibility of combining clustering techniques for terms and
documents. The results shown in the figure were computed for particular values
of the parameters β and γ. The difference between the best and worst configu-
rations is of more than 20%.

4 Conclusions and further work

The preliminary results obtained in our simulations are a positive signal towards
the continuation of our study in that direction. An immediate task we have to
focus on is the realization of further and deeper experiments, with real executions
in real environments, with larger document collections and query logs. Those
experiments should include the usage of different total number P of processors.

An interesting subject of further research regards the possibility of dynami-
cally reconfiguring the arrangement of the processors to adapt to different types
of queries, and also the use of non rectangular arrangements (rows or columns
of different length). Finally, we plan to analyze how do different ranking policies
at row and column level may affect the performance of the system.

References

Fig. 1. Normalized costs as a function of number of columns, for different heuristics

