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Abstract

In this paper results on the dial-a-ride problem with a single server are presented. Requests
for rides consist of two points in a metric space, a source and a destination. A ride has to
be made by the server from the source to the destination. The server travels at unit speed in
the metric space and the objective is to minimize some function of the delivery times at the
destinations. We study this problem in the natural on-line setting. Calls for rides come in while
the server is traveling. This models, e.g. the taxi problem, or, if the server has capacity more
than 1 a minibus or courier service problem. For the version of this problem in which the server
has in4nite capacity having as objective minimization of the time the last destination is served,
we design an algorithm that has competitive ratio 2. We also show that this is best possible,
since no algorithm can have competitive ratio better than 2 independent of the capacity of the
server. Besides, we give a simple 2.5-competitive algorithm for the case with 4nite capacity.
Then we study the on-line problem with objective minimization of the sum of completion times
of the rides. We prove a lower bound on the competitive ratio of any algorithm of 1 +

√
2

for a server with any capacity and of 3 for a server with capacity 1. Finally, we present the
4rst competitive algorithm for the case the server has in4nite capacity and the metric space
is the real line. The algorithm has competitive ratio 15. c© 2001 Elsevier Science B.V. All
rights reserved.
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1. Prologue

Dial-a-ride is a name that covers a rich variety of problems. The common char-
acteristics of dial-a-ride problems is that there are servers that travel in some metric
space to serve requests for rides. Each ride is given by two points in the metric space,
a source, which is the starting point of the ride, and a destination, which is the end
point of the ride. The problem is to assign rides to servers and to route the servers
through the metric space such as to meet some optimality criterion.
The variety in dial-a-ride problems comes from characteristics like the number and

the capacity of servers, existence or not of time-windows on the requests, the type of
metric space and the particular objective function. In [17] a classi4cation for dial-a-ride
problems has been proposed similar to that developed for scheduling problems in [15].
In this paper we study on-line dial-a-ride problems. We present 4rst results in this

4eld of very natural on-line optimization problems that has so far remained virtually
unexplored.
Requests for rides come in over time, while the server(s) are enroute serving other

rides. This model accommodates practical situations that occur for taxi services in
which the capacity of each server is 1, but also for courier services in which the
capacity of each server may be regarded as in4nite, or in between the situation of
minibus services in which the servers have some 4nite capacity.
We emphasize here the particular character of the on-line setting in which the time

Mows while decisions are made and executed. Thus, there is a history, a present, and
a future. The model is a very natural one in on-line routing and scheduling but has
received relatively little research attention in the 4eld of on-line optimization. We could
call the model the real-time model in contrast to what we could call the batch model.
In the latter model, tasks arrive one by one and decisions about them have to be made
immediately and irrevocably. The execution of the resulting planning is done after the
whole planning is made.
The essential feature of the real-time model, which is missing in the batch model,

is that waiting, or postponing decisions, is allowed, at a cost that depends on the time
that elapses, and can actually be bene4cial. In the batch model this does not make any
sense. In the batch model decisions are irrevocable. In the real-time model only the
history is irrevocable.
In the literature some studies on on-line execution problems exist, so far in the

context of scheduling [18, 21]. As far as we know, the only paper on on-line routing
within this model is [4], studying the on-line traveling salesman problem.
We will design deterministic algorithms for a family of dial-a-ride problems with a

single server on a metric space that satis4es some general conditions exposed at the
end of this section. The algorithms will be analysed on their competitive ratio, i.e.,
the worst-case ratio between the objective value produced by the algorithm and the
optimal oN-line value.
We 4rst consider problems in which the objective is to minimize the time it takes to

serve all the rides and return to the origin. We call this the makespan of the service,
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in analogy to the makespan in scheduling problems. We consider two diNerent cases,
in which the server has in4nite capacity and in which the server has 4nite capacity,
which includes the special case of unit capacity. A precise description can be found in
Section 2.
We show in that section that our algorithms for the cases of 4nite capacity k¿1

and in4nite capacity have competitive ratio 2.5, and 2, respectively. We also provide
a lower bound of 2 on the competitive ratio of any deterministic algorithm that holds
for both versions of the problem. This implies that the algorithm for the problem with
capacity ∞ is best possible.
After that in Section 3 we study the dial-a-ride problem with the objective of min-

imizing the average completion time of the requests, also called the latency. The
completion time of a request is the time that a request is served, i.e., the correspond-
ing ride from source to destination has been completed. The general problem on any
metric space is NP-hard (see [6, 17]). The complexity of the problem on the line as
metric space is also NP-hard in case of 4nite capacity [16] and is unknown if the
server has in4nite capacity and we conjecture that this is NP-hard as well. The only
positive result here is on a highly restricted version with one server having capacity 1,
moving on the line and there exists a point such that all sources are lying left of this
point and all destinations right of it. This version is polynomially solvable [17].
We will prove a lower bound of 1+

√
2 on the competitive ratio of any deterministic

algorithm for the on-line problem with a single server having any capacity and a lower
bound of 3 for the same problem with a server having capacity 1. For the problem
on the real line in which the server has in4nite capacity we present a 4rst competitive
algorithm having competitive ratio 15, leaving a considerable gap with the lower bound.
We also prove that the same algorithm is 9-competitive for the particular case in which
sources and destinations coincide, which has been referred to in the literature as the
deliveryman problem or the Traveling Repairman Problem (TRP).
In the epilogue, we give some conclusions and proposals for a host of interesting

problems for future research in the 4eld of dial-a-ride.
In the literature a number of publications have appeared on oN-line dial-a-ride prob-

lems, and if we include routing and scheduling problems as special cases the literature
is abundant. Restricting to “true” dial-a-ride problems, in which each ride is de4ned by
a source and a destination that do not coincide a number of algorithms and heuristics
have been presented from an empirical point of view. For an overview of such methods
and comparative studies on their empirical performance we refer to [7, 19].
From a theoretical point of view we only know of work concerning the objective

of minimizing the time required to complete all rides. Frederickson et al. [12] showed
that the problem with a single server having unit capacity on a general metric space
is NP-hard. Atallah and Kosaraju [3] gave the 4rst polynomial time algorithm for
this problem on the line. Frederickson and Guan showed that the problem is already
NP-hard on a tree [11] unless preemption of the rides is allowed in which case it is
polynomially solvable [10]. Approximation algorithms for the NP-hard versions of this
problem are given in [12, 11].
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For a single server with 4nite capacity greater than one Guan [13] proved that the
problem is NP-hard even on the line, unless preemption of the rides is allowed, in
which case he presented a polynomial time algorithm improving an old result of Karp
[14]. On a tree this problem is NP-hard even if preemption is allowed [13]. Worst-
case ratios for approximation algorithms for this problem on the line, on a tree, and
on general n-point metric spaces, with and without allowing preemption have been
presented recently by Charikar and Raghavachari [8].
As far as we know virtually nothing appeared so far on the on-line dial-a-ride

problem. A recent technical report by Ascheuer et al. [1] emphasizes the need from
practice for studying on-line combinatorial optimization problems in general and some
dial-ride problems in particular. Inspired by such a practical problem Ascheuer et al.
[2] are studying dial-a-ride problems, and have independently of us obtained several
2.5-competitive algorithms for the single-server problem with unit capacity minimizing
makespan. They diNer from ours, although some only slightly.
As a consequence of the work presented in this paper, Feuerstein et al. studied

on-line dial-a-ride problems in a multi-threaded environment in [9].
Closely related to the problems considered here is the before-mentioned work on

the on-line Traveling Salesman Problem (TSP) [4]. The TSP can be seen as a special
version of the dial-a-ride problem in which for each request source and destination
coincide. In fact, this relation is exploited in some of the results we derive in this paper.
We 4nish this section by de4ning a class M of metric spaces that will be consid-

ered in the rest of the paper. Every metric space in M must be symmetric, which
is usually part of the de4nition of metric space, i.e., for every pair of points x; y in
M , d(x; y)=d(y; x), where d(x; y) denotes the distance from x to y. M contains all
continuous metric spaces, i.e., every metric space M having the property that the short-
est path from x∈M to y∈M is continuous, formed by points in M , and has length
d(x; y). For continuous metric spaces the times at which a request can be made can
be any non-negative real number.
Next, M contains discrete metric spaces representable by an underlying graph with

all edges having unit length. The vertices are the points of the metric space. Working
on such spaces time needs to be discretized, i.e., the times ti at which requests are
made are non-negative integers, and the server determines its strategy at integer points
in time being at a point in the metric space (vertex of the graph) and either remains
there or movev in one time step to a neighbouring point in the metric space.
Thus, an example of a model that we do not consider here is one in which the server

moves on a road network of freeways and a request can arrive while he is moving
between two exits and he has to proceed to the next exit before being able to change
his strategy.

2. Competitiveness of the makespan problem

We will 4rst study the problem in which there is a single server starting at the
origin at time 0 that is to serve requests for rides. Each request j is characterized by
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a pair of points 〈sj; dj〉, with sj the source and dj the destination being points in some
underlying metric space belonging to the class M de4ned at the end of the previous
section. Moreover, a ride j has a release date rj. A ride is then to be made from sj to
dj, in that order, and the ride cannot be started in sj before time rj. We will consider
the three variations induced by the various capacity restrictions of the server. In the
4rst one, the server has capacity 1, which means that as soon as he has started a ride
he must 4nish it before being able to start any other ride (we do not allow preemption
of rides). In the second, he has capacity k¿1 implying that he can collect up to k
sources before going to any of their destinations. In the last, the capacity of the server
is in4nite, which means that he can collect any number of sources before getting to
their destinations. In all cases the server travels at a speed of at most 1 per time unit.
He may also wait. The objective is to 4nd a route in which all requested rides are
served and that ends in the origin such that a minimum amount of time is required.
We call the time at which the server 4nishes its route the makespan.
The requests for rides are communicated to the server over time while he may

already be serving rides that have been communicated to him before. At the start of
the problem nothing about the rides is known, not even their number. The release date
of a ride coincides with the time the request for that ride is presented. At that time
the source and the destination of that ride become known.
Before presenting algorithms we 4rst state a lower bound on the competitive ratio of

any deterministic algorithm for the single-server problem independent of his capacity.

Theorem 2.1. For the single-server on-line dial-a-ride problem on any metric space
belonging to M; minimizing makespan; any deterministic algorithm must have a com-
petitive ratio of at least 2; independently of the capacity of the server.

Proof. The proof is direct from the lower bound of 2 on the competitive ratio of
any algorithm for the on-line (TSP) [4, Theorem 3.2]. The on-line TSP is a speci4c
dial-a-ride problem with the property that source and destination of each ride coincide.
Therefore, every ride is completed at the moment it is started and the capacity of the
server becomes irrelevant.

Notice that the lower bound holds for any metric space in M. For speci4c metric
spaces, like the real line of the Euclidean plane the lower bound might be smaller.
We 4rst present a straightforward algorithm that works for any capacity. It has

competitive ratio 2.5 and is the best known so far for the situation of 4nite capacity.
The algorithm consists of repeatedly performing the following strategy:

1. Whenever the server is at the origin, it starts to follow an optimal route that serves
all the requests for rides yet to be served and goes back to the origin (taking into
account the capacity restriction).

We notice that the algorithm ignores all requests that are presented while the server
is on the route that he computed last. That is why we call the algorithm DLT (for
Don’t Listen while Traveling).
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This algorithm 4ts in spirit in the algorithmic framework presented by Shmoys
et al. [20] for on-line scheduling minimizing makespan within a real-time model. They
propose algorithms that start executing a yet to be scheduled set of jobs at the mo-
ment that all machines are available. In this way, the processing of the jobs is done in
batches of subsequences of jobs. Each next batch consists of the jobs being presented
during the complete execution of the previous batch. The batches are then scheduled
oN-line. Shmoys et al. [20, Theorem 2.1] says that if for the oN-line scheduling of
the batches a �-approximation algorithm is used then the resulting algorithm for the
on-line problem is 2�-competitive.
We will prove a similar result here for DLT. Speci4cally, we will show that DLT�,

de4ned as DLT but working with �-approximate instead of optimal routes, is 2:5
�-competitive. That we do not achieve 2�-competitiveness here comes from the fact
that a ride may be regarded as a job with a set-up time equal to the time it takes
to reach the source of the ride. The adversary model we employ allows the adver-
sary to reach the source of a ride before the ride is communicated to the on-line
server. In the proof of the following theorem, we will see how this phenomenon causes
the extra 1

2�.
The result holds for any metric space. In the proofs of the theorems in this

section we use for any route or path T the notation |T | to denote its length.
We notice, that given the assumption that the server does not travel faster than
unit speed the length of a tour is a lower bound on the time required to
traverse it.

Theorem 2.2. DLT� has competitive ratio 2:5� for the on-line dial-a-ride problem
on any metric space with a single server having any capacity and minimizing the
makespan.

Proof. Let t be the time the last request is presented. Obviously, the optimal oN-line
solution value ZOPT cannot be less than t. If the server is at the origin o at time
t, then obviously the length of the tour TR still to be followed for serving the yet
unserved rides is at most � times that of the optimal o>-line tour T serving all the
rides: |TR|6�|T |. Moreover, |T |6ZOPT. Thus, the solution value ZDLT� obtained by
DLT� satis4es ZDLT�= t + |TR|6(1 + �)ZOPT62�ZOPT.
Now, suppose that at time t, DLT� is on a tour TC , serving rides in the set C, which

is of length at most � times the length of the optimal tour T∗C for serving the rides in
C. Let R be the set of requests that have been presented after DLT� started from this
tour at o. Let t′ be the time the 4rst ride in R was presented, and let pOPT(t′)=p∗
be the position of the optimal oN-line server at time t′. Obviously, the optimal oN-
line server must travel |T∗R |, the length of the optimal tour serving the rides in R,
but he might bene4t from the fact that at time t′ he does not have to go any more
from o to p∗. Thus, ZOPT¿t′+ |T∗R |−d(o; p∗). Moreover, obviously, ZOPT¿|T∗C | and
ZOPT¿2d(o; p∗).
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At time t′, DLT� 4rst has to 4nish the tour TC , and afterwards a tour TR, serving
all rides in R, having length |TR|6�|T∗R |. Thus,

ZDLT�6t′ + |TC |+ |TR|6t′ + �|T ∗
R |+ �|T ∗

C |+ d(o; p∗)− d(o; p∗):

Since at t′ the optimal oN-line server cannot be further away from o than t′ we have
t′ − d(o; p∗)¿0. Therefore,

ZDLT�6�(t′ + |T ∗
R | − d(o; p∗)) + �|T ∗

C |+ d(o; p∗): (1)

This together with the above lower bounds on ZOPT establishes the competitive ratio
of 2:5�.

As a corollary we obtain the competitive ratio of DLT, which works with optimal
tours (�=1).

Corollary 2.1. DLT has competitive ratio 2:5 for the on-line dial-a-ride problem
on any metric space with a single server having any capacity and minimizing the
makespan.

Proof. The proof follows directly from the previous theorem by setting �=1. That
the ratio is tight for DLT can be seen from the following input sequence on the line as
metric space. At time 0, there is a request 〈 12 ; 0〉, that DLT starts serving immediately.
Just before he is back at 0, at time 1− �, a request 〈1− �; 1〉 is presented, and 4nally,
at time 1 + � comes a request 〈1 + �; 12 〉. Note that DLT will do a separate tour for
each of the requests, with a total completion time of 1 + 2 + 2 + 2�=5 + 2�. On the
other hand, the adversary may go at the beginning towards 1 − �, where he gets just
at the time the second request is presented. He serves it and goes to 1 + �, where he
serves the third request, arriving at point 12 at time

3
2 + 2�. He can then serve the 4rst

request, 4nishing the whole sequence at time 2 + 2�.

We emphasize that the competitive ratios exhibited in the previous theorems hold
for any metric space and not only for spaces of the class M.
For the on-line problem with capacity ∞, we propose a more complicated algorithm,

which is 2-competitive and hence best possible. The algorithm determines at each time
t the behaviour of the server. It is based on the algorithm that was proposed for the
on-line TSP in [4], which has been called PAH (for Plan At Home) there, and in fact
has the same competitive ratio. We call the algorithm TIR (for Temporarily Ignore
Requests).
We denote the position of the TIR algorithm at time t by p.

1. Whenever the server is at the origin o, it starts to follow an optimal route that
serves all the requests for rides yet to be served and goes back to the origin.

2. If at time t a new request is presented with source s and destination d, then it takes
one of two actions depending on its current position p, s and d:
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2(a) If d(s; o)¿d(p; o) or d(d; o)¿d(p; o), then the server goes back to the origin
(following the shortest path from p) where it appears in a Case 1 situation.

2(b) If both d(s; o)6d(p; o) and d(d; o)6d(p; o) then the server ignores the re-
quest until it arrives at the origin, where again it reenters Case 1.

Theorem 2.3. TIR is has competitive ratio 2 for the on-line dial-a-ride problem on
any metric space in the class M with a single server having in@nite capacity and
minimizing the makespan. Therefore; this algorithm is best possible.

Proof. Let t be the time the last request is presented and let that request be the ride
〈s; d〉. Let p be the position of TIR at time t. Obviously, ZOPT¿t. As in the proof of
the previous theorem, let T be an optimal oN-line route that makes all rides requested.
Obviously, ZOPT¿|T |. We consider each of the three cases described.
Case 1: The server will follow from time t the optimal route making all rides not

yet completed. This route is certainly not longer than |T |, and therefore we have for
TIR’s solution value ZTIR6t + |T |62ZOPT.
Case 2a: The server will return to the origin and start from there an optimal route

making all yet uncompleted rides. Thus, ZTIR6t + d(p; o) + |T |. In this case, we
have for the optimal oN-line route a new lower bound, since the ride 〈s; d〉 cannot
be served before time t. Therefore, ZOPT¿t + d(s; d) + d(d; o). Since either d(s; o) or
d(d; o) is greater than d(p; o) the triangle inequality gives ZOPT¿t + d(p; o). Hence,
ZTIR62ZOPT.
Case 2b: Consider the set Q of rides that has been ignored temporarily by TIR. Let

〈s1; d1〉 be the ride in Q that is served 4rst in the optimal oN-line route, and let t1 be
the time at which this ride was presented. Moreover, let TQ be an optimal route for
the rides in Q. Then certainly ZOPT¿t1 + |TQ|−d(o; s1). At t1 TIR follows an optimal
route to serve all yet unserved rides not in Q. It must have traveled already more than
d(o; s1) on that route, since at the moment the ride 〈s1; d1〉 was presented it was in a
position more remote from o. After 4nishing this route TIR makes an optimal route
for serving the rides in Q. Therefore, ZTIR6t1 + |T | − d(s1; o) + |TQ|62ZOPT.

As we noticed in the theorem the competitive ratio of TIR is tight, since it matches
the lower bound from Theorem 2.1. Still, we give one example that shows asymptotic
tightness. We learn from it that tightness of the algorithm occurs already on the real
line as metric space and moreover that the worst-case occurs in a situation of coinciding
source and destination for each ride, i.e., in an instance of the on-line TSP. The latter
observation is not too surprising since rides of positive length give extra restrictions on
the shape of the tour, also of the oN-line optimal tour, whereas in the case of in4nite
capacity the server cannot be trapped during a ride that he is urged to 4nish before he
can do anything else.
The worst-case example is de4ned on the line with 0 as the origin. At time 0 there

is a request 〈1; 1〉. TIR would serve it immediately and therefore arriving in 1 at time
1. From there he proceeds back to 0. At time 1 + �, a new request is presented in
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〈1; 1〉. TIR will 4nd himself in Case 2(a), and thus, returns to the origin 0, from where
at time 2 he starts to serve the new ride, and therefore 4nishing at time 4. Obviously,
an optimal service schedule would have 4nished at time 2 + �. Thus, the competitive
ratio can be arbitrarily close to 2.
We notice that the lower bound in Theorem 2.1 does not necessarily hold for the

real line and therefore a better algorithm for that particular metric space might exist.
It might be interesting to study the problem in which preemption of rides is allowed,

i.e., a ride may be interrupted at any point and resumed at that point later again at no
extra cost. The oN-line version of this problem has been studied in [10].

3. Competitiveness of the latency problem

We assume the same setting as described precisely in the previous section. Again a
single server starting in the origin is to serve requests for rides. Instead of minimizing
the makespan we consider here the problem of minimizing latency, i.e., the average
completion time or the sum of the completion times of the rides. The completion time
of a ride is the time at which the ride from source to destination is completed. The
restriction that we had in the previous section, that the server is obliged to return to
the origin, is dropped here since it will not be accounted for in the objective function.
The single server has a certain capacity being the number of rides he can be serving
simultaneously.
A lower bound on the competitive ratio of any deterministic algorithm for this

problem for any capacity will be derived using an adversary that gives a sequence
of ride requests playing against an algorithm for the on-line problem.

Theorem 3.1. No deterministic algorithm for the single-server on-line dial-a-ride prob-
lem on any metric space in the class M minimizing the latency can have a competitive
ratio less than 1 +

√
2; independent of the capacity of the server.

Proof. The lower bound will be proved by considering the problem de4ned on the real
line as the underlying metric space with 0 as the origin. Think of an adversary that
at time t=0 presents a request for the ride 〈−1;−1〉. Any algorithm should at some
time, say at time x, serve that request. If x¿1+

√
2 the adversary will not present any

further requests and the algorithm is more than 1+
√
2-competitive, since the adversary

will complete this single ride at time 1.
If x6 1+

√
2 then at time t= x the adversary presents a large number n of equal rides

〈x; x〉. In that case, the adversary will 4rst complete the n rides before serving the ride
in 〈−1;−1〉. Its sum of completion times is then nx+2x+1. The algorithm is at time x
in −1, serves the ride there, and hence cannot complete the n rides before time 2x+1.
Thus, its sum of completion times is bounded from below by x+ n(2x+ 1). Hence, a
lower bound on the competitive ratio of the algorithm is (n(2x+1)+ x)=(nx+2x+1).
Taking n arbitrarily large, this ratio gets arbitrarily close to (2x + 1)=x, which is a
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monotonically decreasing function of x on [0;∞], and therefore the best algorithm that
does not arrive in −1 after time 1+√

2 will arrive there exactly at that time, yielding
a competitive ratio of

2 + 2
√
2 + 1

1 +
√
2

= 1 +
√
2:

We notice that since the source and destination of each ride in the adversarial se-
quence coincide, the capacity of the server does not play any role. Therefore, the above
lower bound holds for any capacity of the server.

In case the capacity of the server is 1, we can obtain a higher lower bound of 3.

Theorem 3.2. No deterministic algorithm for the on-line dial-a-ride problem on any
metric space in the class M with a single server having unit capacity and minimizing
latency can have a competitive ratio of less than 3.

Proof. At time t=0, the adversary presents a request for the ride 〈0;−1〉. If an
algorithm starts this ride not before time 2, there will be no further requests and
the algorithm has competitive ratio at least 3.
If an algorithm starts the ride at a time 0¡x¡2, then at time x the adversary

presents n requests for the ride 〈x; x〉. The algorithm will 4rst 4nish the 4rst ride at
time x+1, after which the n rides are completed at time x+2+ x¿3x. The adversary
4rst completes the n rides presented at time x. Thus, the competitive ratio is at least
(n3x + x + 1)=(nx + 2x + 1), which can be made arbitrarily close to 3, by choosing n
large enough.
Finally, if an algorithm starts the ride at time x = 0, n requests for the ride 〈1; 1〉 are

presented. The algorithm will not complete the n rides before time 1+ 2 = 3, whereas
the adversary will complete the n rides at time 1. This yields a competitive ratio of
(3n+1)=(n+3), which is again arbitrarily close to 3 by choosing n large enough.

From the adversarial sequence in the above proof we deduce that any server with
unit capacity that starts a ride as soon as one is presented, i.e., does not wait, will not
have a constant competitiveness.

Lemma 3.1. For the on-line dial-a-ride problem with a single server with capacity
1 and minimizing latency; any algorithm that starts serving a request immediately
whenever there is any one unserved will be S(n)-competitive; with n denoting the total
number of requests.

Proof. The proof is a simple adaptation of the adversarial sequence in the proof of
the previous theorem. At time 0 the request 〈0;−1〉 is given, and at time � follow n
requests 〈0; 0〉. The adversary will wait � and hence will reach a latency of (n+1)�+1.
An algorithm that does not wait will have to 4nish the 4rst ride before returning to 0



E. Feuerstein, L. Stougie / Theoretical Computer Science 268 (2001) 91–105 101

to serve the n later rides hence yielding a latency of 1 + 2n. Letting � tend to 0 gives
the desired lower bound.

For the single-server problem with any capacity greater than 1 similar conclusions
can be drawn based on the adversarial sequence in the proof of Theorem 3.1. In
particular, any algorithm that does not allow to wait will have a competitive ratio of
at least 3.
We will now show a competitive algorithm for the capacity ∞ case on the line.

The same algorithm is 9-competitive for the case in which sources and destinations
coincide, that is the on-line version of the so-called TRP. The algorithm is an adaptation
of the 9-competitive algorithm proposed by Baeza-Yates et al. in [5] for the problem
of searching a point on a line. The same algorithm has been proposed in [6] as an
approximation algorithm for the oN-line TRP on the line. Our algorithm, that we call
BCR (for Blindly Construct the Route) works as follows: Let � = min{t; |u|}, where u
is the position of the starting point nearest to the origin of the rides that are presented
at time 0, if any, and t¿0 is the 4rst time strictly after 0 at which a request for a ride
is presented.
At time 0 the server starts moving to the right until it arrives to point �, then back

to 0 and to the left till −2�, then to 4� and so on. In general, phase k of the algorithm
consists of moving from 0 to (−2)k� and back to 0, k = 0; 1; 2; : : : . At every point
where there is a request the server picks it up and delivers it at its destination the
4rst time he visits it. We will prove that this algorithm is 9-competitive for the case
in which sources and destinations coincide (on-line TRP) and 15-competitive for the
latency problem with capacity ∞.
Theorem 3.3. BCR has competitive ratio 9 for the on-line Traveling Repairman Prob-
lem on the line.

Proof. Without loss of generality we may assume that �=1. We will prove the
stronger result that any single request is served not later than 9 times the minimum
time it could have been served. Let us study the request s presented at time t. A 4rst
observation is that the optimal completion time of this request is

COPTs ¿max{|s|; t}¿� = 1: (2)

Moreover, from [5] we know that if s is served the 4rst time it is visited then its
completion time achieved by BCR will be at most nine times the optimal completion
time. It remains to show that the same bound holds if this is not true.
Assume that s is served during phase k of BCR. For k¡2 the theorem is obviously

true since phase 1 4nishes at time 2(20 + 21) = 66 6COPTs . Thus, we assume that
k¿ 2. We distinguish between two cases.

1. s is served while the server is moving from 0 to (−2)k , i.e., in the 4rst half of
phase k. Since it is not the 4rst visit of BCR at s, we must have that

|s|62k−2;
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and also

t¿2
k−3∑

i=0

2i + 2k−2 = 2(2k−2 − 1) + 2k−2 = 3(2k−2)− 2: (3)

For the completion time of the request by BCR we have

CBCRs = 2
k−1∑

i=0

2i + |s|62(2k − 1) + 2k−2 = 9(2k−2)− 2

6 t + 6(2k−2)67COPTs ;

where the last but one inequality follows from (3) and the last inequality from (2)
together with the fact that from (3) we have t¿2k−2 for k¿ 2.

2. s is served while the server is moving from (−2)k to 0. But this means that the
request has been presented after the server started phase k, and therefore,

t¿2
k−1∑

i=0

2i = 2(2k)− 2: (4)

In this case

CBCRs 62
k∑

i=0

2i = 2(2k+1 − 1) = 4(2k)− 26t + 2(2k)63COPTs ;

where the last but one inequality follows from (4) and the last inequality from (2)
and the fact that from (4) we have t¿ 2k for k¿ 2.

Since the above shows that for any job its completion time achieved by BCR is at
most nine times its earliest possible completion time, the theorem follows. The tightness
of this bound follows directly from [5].

Theorem 3.4. BCR has a competitive ratio of 15 for the on-line dial-a-ride problem
on the line with a single server having in@nite capacity and minimizing the latency.

Proof. The proof is along the same lines as that of the previous theorem. Again,
without loss of generality we assume that �=1, and study the behaviour of BCR on
some arbitrary request 〈s; d〉 presented at time t. Obviously, the optimal completion
time of this ride is

COPTs;d ¿max{|s|; t}+ d(s; d)¿� + d(s; d)¿1: (5)

From [5], we know that if the ride is completed in d the 4rst time that d is visited then
its completion time achieved by BCR will be at most 9 times the optimal completion
time.
In studying the remaining situation, assume that the ride has started in s during

phase k of BCR. In case k =0, the theorem is obviously true since the ride will be
completed at latest in phase 2, in which case d61, and therefore the completion time
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is at most 2 + 4 + 1 = 76 7COPTs; d . If k =1, the ride will be completed at the latest in
phase 3 at time 2 + 4 + 8 + |d|=14 + |d|6 15COPTs; d . Thus, we assume from now on
that k¿2. We distinguish between two cases.
1. 〈s; d〉 is started in s while the server is moving from 0 to (−2)k . For the completion
time of the request by BCR we have

CBCRs;d 6 2
k−1∑

i=0

2i + |s|+ 2(2k − |s|) + d(s; d)

= 2(2k − 1) + 2(2k) + d(s; d)− |s|
= 16(2k−2) + d(s; d)− |s| − 2: (6)

We consider two further subcases this time, the 4rst of which is the crucial one.
• When starting the ride in s, it is the 4rst visit of BCR at s, in which case
|s|¿2k−2. In this case we can bound the BCR completion time of the ride in
(6) by

CBCRs;d 615|s|+ d(s; d)− 2615COPTs;d ;

using (5).
• When starting the ride in s, it is not the 4rst visit of BCR at s, in which case
t¿ 2

∑k−3
i=0 2

i+2k−2 = 3(2k−2)−2. In this case we bound the BCR completion
time of the ride in (6) by

CBCRs;d 616(2k−2) + d(s; d)− 2613(2k−2) + t + d(s; d)614COPTs;d ;

using (5) and the bound on t for this case, which also implies that t¿ 2k−2 for
k¿2.

2. 〈s; d〉 is started in s while the server is moving from (−2)k to 0. This means
that the request has been presented after the server started phase k, and therefore
t¿ 2

∑k−1
i=0 2

i = 2(2k)− 2. In this case

CBCRs;d 62
k+1∑

i=0

2i + 2k = 2(2k+2 − 1) + 2k = 9(2k)− 267(2k) + t68COPTs;d ;

where the last inequality follows from (5) and the fact that t¿ 2k .
Since the above shows that for any ride its completion time achieved by BCR is at

most 15 times its earliest possible completion time, the theorem follows.
That the ratio is tight is seen from the following request sequence. At time 0 one

request is presented for ride 〈1; 1〉 and one for ride 〈2k−2 + 2�; 2k−2 + �〉. The 4rst ride
is completed at time CBCR1 = 1 and the completion time CBCR2 of the second ride is
exactly

CBCR2 = 16(2k−2) + �− 2k−2 − 2�− 2 = 15(2k−2)− 2− �:
Thus, ZBCR = CBCR1 + CBCR2 = 15(2k−2)− 1− �.
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Obviously, for the optimal solution we have COPT1 = 1 and COPT2 = 2k−2 + 3�, and
ZOPT = 2k−2 + 1 + 3�. The ratio tends to 15 if k tends to ∞.

4. Epilogue

We emphasize that the present paper contains 4rst results in a 4eld of natural on-line
problems that has so far been virtually unexplored. On-line dial-a-ride problems are
occurring in a wide variety of practical settings, and cover not only physical rides by
transportation means. As an abstraction almost all (machine) scheduling and routing
problems can be translated as special versions of dial-a-ride.
That the 4eld raises theoretical challenges is well exempli4ed by the problems with

a criterion of minimizing latency. The constant competitive algorithm that we presented
does not take into account any information about the locations of the rides, but just
moves blindly from left to right and vice versa. Indeed, there is a rather big gap
between its competitive ratio and the lower bound. An example shows that the obvious
and intuitively not so bad greedy algorithm has an in4nite competitive ratio. Copying
of the results for the related on-line single-machine scheduling problem [18, 21] is not
straightforward, since there are no easy lower bounds on completion times of rides,
e.g., given by the preemptive version of the problem.
Considering multiple servers would be a stimulating extension to our framework, both

from a theoretical and practical point of view. Besides, it is interesting to introduce
more realistic restrictions to the model, as restrictions on the minimum and maximum
length of rides (relative to the speed of the server), maximum individual waiting times,
and others that may arise in a practical setting.
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