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Abstract

A naw, biologically plausiblemodelof associatie memoryis presentedFirst, a historicalperspectie of themore
relevantimprovementdo thebasicLittle-Hopfield modelis given. Then,we introducea stochastisystemwith graded
responseneuronsanda network consistingof a non countablenumberof neuronsorganizedin a continuousmetric
space.We do this by castingthe retrieval procesof ananalogHopfield model[7] into the framevork of a diffusive
procesggovernedby the Fokker-Plank (F-P) equation. This modelhasthe ability to escapespuriousmemoriesand,
at the sametime, is continuousin neuraltransferfunction, topologyandtime scale. However, it requiresthe useof
pathintegralson functional,infinite dimensionakpacesthusturning very difficult ary further analyticaltreatment.
Thenwe resignthe continuoustopologicaldescriptionof the statespace unifying the gradedresponsaunits model
[7] andthe stochasti@pproachandobtaininga completedescriptionof theretrieval processat boththe microscopic,
individual neuronlevel andthe macroscopidevel of time evolution of the probability densityfunctionover the space
of all possibleactivation patterns.

Keywords: neuralnetworks,associatie memory dynamicakystemsHopfieldmodel,Fokker-Planckequation.

1 Intr oduction

Since the Little [10,11] and the Hopfield [6] models were formulated to describe the computa-
tional ability of an ensemble of simple processing units, appeared to be necessary to reconcile
those formal descriptions (provided by discrete models inspired in an Ising system) with a
series of biological evidences:

i) One of the strongest objections to the plausibility of the discrete Hopfield model [6]
was that a two-state representation of the neural output is, from a biological point of view,
an oversimplification and that it is necessary to describe relevant neural activity by firing
rates, rather than merely by the presence or the absence of an individual spike.

ii) Little and Hopfield models are deterministic: its dynamics is ”dissipative”, in the
sense that the energy is monotonically decreasing. Hence spurious, uncalled attractor states
(whose number increases with that of memories stored in the synaptic weight matrix) cannot
be escaped if the initial state is inside its basin attraction: they are surrounded by energy
barriers. This deterministic conception of neural dynamics, apart from being impractical, is
not very biologically plausible: most biologists currently consider that noise and randomness
are almost universal in living systems. Then, if neuronal dynamics is stochastic, neurons can
make transitions into states which are opposed to the direction of their presynaptic potential
(PSP) [1], due to several factors as the actual difference between the PSP and the threshold
and the level of the noise.

iii) Truly continuum of the neural tissue: while the empirical evidence always shows
patterns of activity or quiescence involving patches with finite sizes, the ferromagnetic ap-
proach suggests systems with punctual, discrete processing units (with no dimensions). In
spite of this simplification all the discrete models have been remarkably successful in provid-
ing descriptions of emergent processing abilities that correspond to stylized facts concerning
basic elementary cognitive processes.



iv) Little and Hopfield models are also discrete in time. This means that its dynamics
proceeds step by step and hence it can only be formally described by difference equations.
This, besides the problem of logical plausibility (a discrete notion of time is counter-intuitive)
prevents the analysis of the dynamical properties of the system by means of strong mathe-
matical tools, which only are applicable for continuous, differential equations dynamics.

Upon time, different solutions were proposed in order to improve the original models
concerning each of the aspects listed above:

i) In a later paper, Hopfield [7] aims at a more realistic model by replacing bistable
neurons by graded response devices. In either case the retrieval process is again guaranteed
by the nature of the matrix of synaptic efficacies.

ii) A number of authors [5,12] have considered more realistic pictures of the neuron
response by assuming that the transition between the two stable states of individual neurons is
affected by a random field representing thermal fluctuations. They introduced noisy dynamics
into the discrete Hopfield model via the Glauber formalism. This allows to control the level
of noise by means of a unique parameter 8 =1/T, where T is called the "temperature”. In fact,
for low values of T, the noise is not too high, hence the system behaves quasi-deterministically
and the spurious states persist. On the other hand, for high T, the dynamics is purely ergodic,
so there are no attractors at all, either spurious or not. But for some medium range of values
of T, it is possible to destabilize the spurious attractors while, at the same time, getting few
errors in the retrieval of stored memories.

iii) In [13,14] an extension of the Little-Hopfield model to an infinite continuous di-
mensional state space is presented. With the only assumption that the synaptic matrix
T is symmetric and with non-negative diagonal elements, several results are derived that
generalize well known properties of discrete, Ising-type models.

iv) The graded response model by Hopfield [7] solves, at the same time, the problem
of continuity of time scale, describing system dynamics by a system of non linear ordinary
differential equations (as many equations as units in the system). The extension proposed in
[13,14] also obeys to a continuous time dynamics, with the difference that it is described by
a unique integro-differential equation over an infinite-dimensional euclidean space.

Our aim is to provide, in the same model, answers to several of these deficiencies simul-
taneously. A generalization of the non deterministic, finite temperature Glauber dynamics [3]
to the case of graded response neurons is attempted (section 4) for the case in which the net-
work consists of a non countable number of neurons organized in a continuous metric space.
We do this by casting the retrieval process of a Hopfield model with graded response neu-
rons, into the framework of a diffusive process governed by the Fokker-Plank (F-P) equation.
We thus provide a description of the transitional regime that prevails during the retrieval
process, that is currently disregarded. That approach formally leads to a functional F-P de-
scription of the retrieval dynamics but turns very difficult any further analytical treatment.
So, in the last part of the paper (section 5), we restrict the diffusive description to the model
with continuous transfer functions and continuous time scale, but in a discrete state space.
In other words, we unify the graded response units model [7| and the stochastic approach,
obtaining a complete and analytically rigorous description of the retrieval process at both
the microscopic, individual neuron level and the macroscopic level of time evolution of the
probability density function over the space of all possible activation patterns. In other words,
we give a simultaneous answer to objections i), i1) and iv).

2 Associatve memory. The original Little-Hopfield model

The problem of associative memory is that of storing a set of p patterns & in such a way that
when presented a new element ¢ as input, the system output is the ¥ that most resembles

In both the Little [10,11] and the Hopfield [6] model, each &* (u=1,2,...,p) belongs to
the set {1,—1}N of all N-tuples whose elements can take on the values 1 (active neuron) or —1
(inactive neuron).

The dynamics of the network is



S(t+1):sgnZTiij(t) 1<i<N
]
where S(t) stands for the state of the i-th unit of the system at time t and
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The stability condition for an element & is
Ei:sgnZTijEj 1<i<N
]

The main contribution of Hopfield (not present in Little’s proposal), is the introduction
of a Lyapunov function:

HIS=-53 TS

In [6] it is proven that if the £# are generated pseudoorthogonally, its number p doesn’t
exceed a critical value p; and the weight matrix is computed following the Hebb rule [4], i.e.
as

p
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then the system has the property of associative memory.

As for the energy function H, and provided T is symmetric, it decreases monotonically
as the system evolves, being its minima the stored &* (called attractors of the dynamics).

In the case of orthogonal memories, the storage capacity increases: it is possible to
store and retrieve without errors exactly N memories.

3 Bridging the gaps

3.1 Continuoustransfer functions: Hopfield’84

The gap reported in i) (see the Introduction) was bridged by Hopfield himself. In [7] he
introduces the following dynamics:
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where g, is a one-parameter continuous function, non decreasing and odd, also satisfying
lim go(X) =£1 and limy_,gs(X) =sgn(x) Vx#0

X—Fo00
Therefore the elements V = (V,,...,V) now belong to [-1,1]N. The stability condition is
rewritten as:

J

and the energy function is extended as:
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The properties of this model are similar to those of the discrete one: its dynamics
minimizes the H defined above, whose minima are the stored memories. Moreover, when
o — o, the attractors tend to be located on the vertices of the hypercube [-1,1]N; in fact, they
coincide with those produced by the discrete dynamics [6] for the same T. The existence of
spurious attractors is known also in this case.



3.2 Stochasticmodels

As for the objection ii) in the Introduction, several stochastic versions of the discrete Hopfield
model have been proposed [5,12]. In those approaches, which are based on that of Glauber
[3], the probability distribution of the state of the i-th processing unit S at time n+1 is given

by

1
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As usual h¢ = E T;;¢; is the local field on site i when all neurons have activities labelled by ¢ at
i=1

time n. The parameter B represents the inverse temperature (we set the Boltzmann constant
equal to 1) and T is the matrix of synaptic efficacies. This allows to control the level of noise,
as described in the introduction. Choosing a proper value for g, it is possible to avoid both
deterministic behavior (high B) and completely random walk (low B), thus escaping spurious
states while retrieving stored memories with few errors.

The activity pattern of the system is defined through a Markov process that can be
formulated as a Masterequation[1]:

P(&,n+1)=P(&,m+ 5 W, (& [ P(Z,n) —W,({ | §)P(E,N)] )
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where
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and n represents a discrete time. This equation reflects the temporal evolution of the proba-
bility distribution associated to the discrete Hopfield model, i.e. P(&,n) is the probability of
the system to be in an excitation pattern & at the n-th step of the evolution process.

W (& 1) = )

3.3 A continuousmodel of the neural tissue

Now we ask if it is possible to extend the original, discrete Little-Hopfield model in another
sense: to provide a continuous topological description of the neural cortex.

We assume that v(xt) describes the activity of a point-like neuron located in x at time
t. This pattern of activity evolves according to:

avg;’t) v+ ( / W(x,y)v(y,t)dy) 3)
Q

with v(x,t) 1 QxR,,— R, QC X. X is a metric space, Q a compact domain, g, a sigmoid func-
tion, i.e. gs € C(R), non decreasing and odd and satisfying lim,_, ., 9o(X) = £V, liMgoeds(X) =
sgr(x) Vx#£0, | ga(X) |< min{V,,,0x} and g,(0) = 0.

If we call Sthe set of all possible states v(x)(patterns of activity) of the system, a solution
v(xt) fulfilling (3) is a trajectory in S

From now on we assume, without loss of generality, that v,,=1. Asforw:QxQ—-R,
we assume it is continuous almost everywhere (a.e.) in order to warrant that the integral is
well defined. As a natural extension of the discrete case we introduce the localfield on (or net
input to) the neuron located in x when the state of the system is v(yt):

= / W(x,y)V(y,t)dy

In the particular case t =0, we write h'(x) £ hj(x). Note that hV is linear in v.
Given an initial condition v¥(x) £ v¥(x,0) and the solution v(xt) of (3) that is associated
to it, we say that v¥(x) is a memoryor an attractor iff:



1) v* is an equilibrium point, i.e. V¥(x) =g, ( SW(x,y)vH (y)dy) a.e
Q

2) For every t,> 0 and v, a different initial condition that corresponds to the solution v,
there exists 3(t,) > 0 such that if || v¥ —v,||< & then [ v#(-,t) = v(-,t) |- 0 when t — «.
Thus, attractors are stationary solutions of (3). Except when indicated, we assume S=L2(Q)
and moreover | Q|< » (Q has finite Lebesgue measure).

We define the enegy of the system at time t, as:
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where v is viewed as a function of x. Thus, each v in S has an energy H(v) associated to it.
This is a clear extension of what has been proposed in [7] for the energy of the (discrete)
model with neurons with graded activation functions (Hopfield’84). The above definition is
justified by the following:

Theoem1: If W is symmetric, then H is monotonically decreasing with t and it reaches its
minima at states v (x) = v(xte) such that

ov
[E(Xat)] . =0 4)

a.e.in Q, i.e. given a solution v(x,t) the minima of H coincide with the equilibrium points of the
system. The reciprocal is not necessarily true: from the previous theorem it does not follow
that if a solution v(xt) of (3) satisfies condition (4) for some t*, then v(x,t*) is an attractor. For
example, the trivial solution v=0 satisfies it for all t, but as we will soon see its stability or
instability depends on the slope o of g, at the origin. In general, the possibility to construct
non-trivial memories strongly depends on such parameter.
Theoem2: If 0 < ﬁ, being M such that |W(x,y) |[< M, then the unique stationary solution of
(3) is v=o.

Besides the preceding condition oM | Q |> 1, other requirements have to be fulfilled in
order to warrant the effective existence of non trivial solutions.
Theoem3: if for some ¢ > 0 holds that W(x,y) >0 when |x—y|< ¢, then

lim max min{1—v(x),1+v(x)} =0
O—oye{attractors},xeQ { ( ) ( )}

In other words, when o — «, the attractors approach the asymptotic bounds of g, i.e. £1.
Many other results can be proven regarding this model. In particular, if the memories
are orthogonal and the synaptic operator is constructed following the Hebb rule, the following
results hold:
- The number of memories is not bounded.
- Necessary and sufficient conditions for the memories and the zero to be stable, are derived
in terms of the relation between parameters of the transfer function.
- All memories have a basin of attraction with the same positive radius.
- If a spurious memory vanishes at some point of the space, then its basin of attraction has
zero radius in the L2 norm and it is a saddle point of the dynamics.
Also for the sake of biological plausibility, it is possible to:
- impose a “finite resolution” to the stored memories by limiting the minimum size of the
activity patches.
- modify the equation that governs the evolution of the system, in order to some graded
transition taking place between patches with firing neurons and patches without activity.
As pointed above, this proposal provides continuity, at the same time, in three levels:
topology of the space of activity patterns, input-output response of individual neurons and
time scale. Only objection iii) remains unanswered, i.e. the system remains deterministic
and hence unable to escape spurious, metastable states.



4 Continuity + randomness:a unified approach

Until now we where mainly concerned with what is, thermodynamically speaking, a zero
temperature dynamics, i.e. a deterministic law of evolution. In order to enhance the system
introduced in the previous section with a stochastic dynamics, we must formulate a finite
temperature version of it, in the same fashion as the stochastic versions [5,12] of the basic
discrete model (see section 3.2). In our case, & and { are elements in the (normed) state
space S and W, : Sx S+— [0,1] is the transition probability matrix. Being S continuous infinite

dimensional it is no longer possible to construct W (& 14) from point transition probabilities.
This problem can be circumvented with a proper definition of W;. Using Feynmann path

integrals [2], it is possible to obtain an expression for the time evolution of the probability
distribution P which has the form of a Fokker-Planck equation in an infinite dimensional
normed space:

dP(é,t 1
PPN ane,P)+ 3yl P) ©

with a,(&,P) = [{W,(&:n)P(E D} (r,...,r)Dr,  (1,...,1) €S, where {W,(&;r)P(E,1)}(") stands for the
S

v-th order derivative of {W,(&n)P(E,1)} at & applied to the element (r,..,r) in Sx..xS=¢"

(being this v-th order derivative a linear application from S’ onto R). For the case S=R we
get the well-known one-dimensional Fokker-Planck equation:

JdP(¢, 7] 0?
Pl - 2 O+ 5 a2l

with a,(&) = frYW(&;r)dr
s

The interpretation of the Fokker-Plank equation is simple. The probability density
P(&,t) is defined on the space of all possible activation patterns &(x) and describes the evo-
lution involved in the “retrieval” process of some particular activation pattern starting from
a given arbitrary configuration. The transition probability matrix W;(&;r) governs this evo-

lution through the “moments” involved in the Fokker-Plank equation. Upon retrieval, the
(stationary) probability density reached when t goes to infinity is expected to be peaked in
the neighborhood of the recalled memory. This final activation pattern is however not ex-
pected to be o-like due precisely to the finite temperature fluctuations. A pure deterministic
case can only be recovered by letting B go to infinity.

This model gives, in fact, an answer to the four objections posed in the introduction:
it unifies stochasticity and the three levels of continuity. However, the analytical difficulties
involved in this approach are clear: the introduction of path integrals to define the jump
moments a,(&,P) over the space S turn very complex any further analysis concerning the
actual dynamics of the system, especially equilibrium solutions and its stability. So, it is
necessary to resign some of the features of the system in order to get it more analytically
tractable.

5 Resigningtopological continuity, winning tractability

It is easy to note that the analytical difficulties of the model presented in the previous section
are a consequence of the infinite dimensionality of its configuration space. But it is possible to
get back to the finite dimensional state space. In fact, our derivation of the finite temperature
dynamics for the continuous system is a natural extension of the master equation (1) based
on the transition matrix (2). Therefore, it could have been applied to the analog Hopfield
model [7] in a direct way, since that case requires a simple multivariate formulation of (5):
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being now & the usual first order moment for the i-th coordinate, &) the element (i, j) of the

covariance matrix and N the number of processing units.

Now the task is, from a theoretical viewpoint, to show that the Hopfield model with
graded response activation can be extended to the case in which the evolution law is non
deterministic, in the same way as the Hopfield discrete model is extended as to include finite
temperature effects through the Glauber dynamics. It can be proven that this leads to a
multidimensional Langevin process describing the process at a microscopic level, in the form

éi :_Ei"‘gy(hf)"'l-i(t) i=1..,N

where L,(t) is a stochastic process whose parameter (the same for all units) plays the roll of a
temperature, while the time evolution of the probability density distribution is governed by
the multivariate Fokker-Planck equation operating over the space of all possible activation
patterns. It can also be shown (the work is in progress) that the equilibrium distribution in
the sense of ensemble averages (that is, for a large number of units) is Gaussian and that
the system reaches it from any continuous initial distribution. In other words, the task is
to find the equations representing the evolution of the probability distribution associated to
a Hopfield model with a large enough number of graded response neurons with stochastic
noise.

In sum, this neural network model of associative memory unifies the two historically
more relevant enhancements to the basic Little-Hopfield discrete model: the graded response
units approach [7] and the stochastic, Glauber inspired model with a random field represent-
ing thermal fluctuations. In other words, it is dynamically stochastic and retains continuity
at the transfer function and the time scale levels. As for the topological continuity, although
it is actually discrete, its equilibrium distribution and stability are valid in the sense of en-
semble averages, i.e., for a large, number of units, hence in a virtually infinite dimensional
state space.

In practical terms, the present unified model has two remarkable features: i) Greater
biological plausibility, resulting from the conjunction of the graded response transfer function
for individual units and the stochastic, noisy dynamics of the whole system; ii) ability to
escape spurious memories, due to the form of equilibrium probability distributions, that are
assymptotically stable and assign maximum probability to stored memories.

6 Conclusions

We have presented a new approach to the problem of enhancing a neural network of associa-
tive memory with as more biologically plausible features as possible.

Basically, four main gaps in that plausibility were listed. We presented a historical
perspective of the more important contributions made in the sense of extending the basic
Little-Hopfield model as to give answer to those different deficiencies.

Then, we introduced a general stochastic system with graded response neurons and a
network consisting of a non countable number of neurons organized in a continuous metric
space. We did this by casting the retrieval process of a Hopfield model with graded response
neurons, into the framework of a diffusive process governed by the Fokker-Plank (F-P) equa-
tion. This model has the ability to escape spurious memories and, at the same time, is
continuous in neural transfer function, topology and time scale.

However, it made necessary the use of path integrals on functional, infinite dimensional
spaces, thus turning very difficult any further analytical treatment. Therefore, we restricted
the diffusive description to the model with continuous transfer functions and continuous
time scale, but in a discrete state space. In other words, we unified the graded response
units model [7] and the stochastic approach, obtaining a description of the retrieval process
at both the microscopic, individual neuron level and the macroscopic level of time evolution
of the probability density function over the space of all possible activation patterns.
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