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« Execution configuration optimization
* Instruction optimization
e Summary
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Overall Optimization Strategies

* Maximize parallel execution

— Exposing data parallelism in algorithms
— Choosing execution configuration

— Overlap memory transfer with computation

* Maximize memory bandwidth
— Avoid starving the GPU

« Maximize instruction throughput

— Get the job done with as few clock cycles as possible

 Profiling your code before doing optimization
— NVIDIA OpenCL visual profiler

We will talk about how to do those in NVIDIA GPUs.
Very similar to CUDA C. o o v corsoaron <ANVIDIA.
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Tesla Compute Architecture (GT200)

* GPU contains 30 Streaming Multiprocessors (SM)

MT Issue

« Each Multiprocessor contains

— 8 Scalar Processors (SP) TPC
» |EEE 754 32-bit floating point
» 32-bit and 64-bit integer

— 1 Multithreaded Instruction Unit
» Up to 1024 concurrent threads

— 1 Double Precision Unit: IEEE 754 64-bit floating point SFU||SFU
— 2 Special Function Units (SFU)
— 16 KB shared memory

— 16K 32-bit registers

GPU conrerence

===
===
=|====
o o
1 o
o
1 o
I o
=
| | |

& 2009 NVIDIA CORPORATION < NVIDIA.




Fermi Compute Architecture

Instruction Cache
L. 4
Scheduler Scheduler

Dispatch Dispatch

* 16 Multiprocessors ——pegiterFile

Core Core Core Core

« Each Multiprocessor contains: e

Core Core Core Core

— 32 Cores Core Core Core Core
T . S
» 32 FP32 ops/clock Core Core Core Core

GPU conrerence

* 16 FP54 ops/clock Core Core Core Core
_ - 2 Warp Scheduler Core Core Core Core

+ Up to 1536 threads concurrently Core Core Core Core

A& & & 4
Core Core Core Core

— Up to 48 KB L1 cache —Special Func Units x 4

Interconnect Network

— 4 SFUs 64K Configurable

— Up to 48 KB shared memory

Cache / Shared Mem

— 32K 32-bit registers Uniform Cache
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% L OpenCL GPU
O Z
E 8 [] Work-item are executed by scalar processors
Scalar
: Work-item/thread Processor
m Work-groups are executed on multiprocessors
o ==
22222222 00 Work-groups do not migrate
1.
[ :
Several concurrent work-groups can reside on
- one SM- limited by SM resources
Work-group

Multiprocessor

A kernel is launched as a grid of work-groups

In GT200, only one kernel can execute on a
device at one time (Up to 16 in Fermi)
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Warp and SIMT

time

32 Threads
2222‘ ' 2 — 32 Threads

32 Threads
Work-group Warps

® Work-groups divided into groups of 32 threads
called warps.

® Warps always perform same instruction (SIMT)

® Warps are basic scheduling units (Fermi schedules
2 warps at the same time)

® 4 clock cycles to dispatch an instruction to
all the threads in a warp (2 in Fermi)

® A lot of warps can hide memory latency

© 2009 NVIDIA CORPORATION @ nul DIA.



GPU conrerence

OpenCL Memory Hierarchy

Private Private
Memory Memory
1 1

Private Private

Memory Memory
1 1

Workltem1l Workltem M
PE PE

Workltem1l Workltem M
PE PE

Local Memory I I Local Memory

Global / Constant Memory Data Cache

Compute Device

!

Global Memory

Compute Device Memory

® Global: R/W per-kernel
® Constant : R per-kernel
® Local memory: R/W per-group
® Private: R/W per-thread

© 2009 NVIDIA CORPORATION @ nvl DIA.



Mapping OpenCL to the CUDA
Architecture

OpenCL CUDA Architecture

Bilvaie Bilvate Bilvaie Bilvate Registers Registers Registers Registers
Memory Memory Memory Memory 9 9 9 9
1 1 1 1 1 1 1 1
Thread Thread Thread Thread

Workltem1l Workltem M Workltem1l Workltem M
Processor Processor Processor Processor

GPU conrerence

Local Memory Local Memory
:f.ffr — Global / Constant Memory Data Cache

: . Compute Device Compute Device

Shared Memory Shared Memory
Global / Constant Memory Data Cache

Global Memory Global/Local Memory

Compute Device Memory Compute Device Memory
© 2007 KVIDIA CORPORATION @ nUIDIA.
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Overview of Memory Optimization

 Minimize host<->device data transfer

» Coalesce global memory access
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« Use local memory as a cache

& 2009 NVIDIA CORPORATION < NVIDIA.



GPU conrerence

Minimizing host-device data transfer

 Host<->device data transfer has much lower bandwidth
than global memory access.
— 8 GB/s (PCl-e, x16 Gen2) vs 141 GB/s (GTX 280)

 Minimize transfer

— Intermediate data can be allocated, operated, de-allocated directly on GPU
— Sometimes it’s even better to recompute on GPU

— Move CPU codes to GPU that do not have performance gains if it can reduce data transfer

* Group transfer

— One large transfer much better than many small ones: latency ~ 10 microsec, thus for data
size < 4KB, transfer time is dominated by latency

© 2009 NVIDIA CORPORATION @ nul DIA.



Coalescing

* Global memory latency: 400-800 cycles.
The single most important performance consideration!

» Global memory access by threads of a half warp (16) can be
coalesced to one transaction for word of size 8-bit, 16-bit, 32-
bit, 64-bit or two transactions for 128-bit. (On Fermi, coalescing
is for warp)
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Compute Capability

 First generation CUDA architecture (G80) has compute capability
1.0, 1.1, e.g. GTX 8800, Tesla 870,

» Second generation CUDA architecture (GT200) has compute
capability 1.3, e.g. GTX 280, Tesla C1060

« A full list of compute capability of various cards can be found at
appendix A.1 of the OpenCL programming guide

GPU conFerence

-+ Target compute capability 1.0 with optional optimizations for
" higher compute capabilities (unless you know exactly the GPU
your kernels will run on)
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Segments

* Global memory can be viewed as composing alighed segments of
16 and 32 words.

~ }64B aligned segment

E.g. 32-bit word: T ——
EEEEEEEE NN 2% 2o oo
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Half warp of threads
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Coalescing in Compute Capability 1.0
and 1.1

« K-th thread in a half warp must access the k-th word in
a segment; however, not all threads need to participate

Coalesces — 1 transaction
- IEEEEEEE EEEEEEEEEEEEEEEE EEEEEEEN -

T

GPU conrerence

Out of sequence — 16 transactions
— | - ANNEEEEE EEEEEEEEEEEEEEEE EEEEEEEN - -

i

Misaligned — 16 transactions
- ANEEEEEE EEEEEEEEEEEEEEEE INEEEEEN - -
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Coalescing in Compute Capability
>=1.2

» Coalescing for any pattern of access that fits into a segment size

« # of transactions = # of accessed segments
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Coalescing in Compute Capability

>= 1.2
1 transaction - 64B segment

TR

GPU conrerence

2 transactions - 64B and 32B segments

——

1 transaction - 128B segment

IR [ @mvioia




Example of Misalighed Accesses

__kernel void offsetCopy(__global float *odata, offset=1
__global float* idata,
int offset)

{
int xid = get_global_id(0) + offset;
odata[xid] = idata[xid];

GPU conrerence

}
Copy with Offset
120 T
g 1 GTX280 (compute capability 1.3) drops
g ' , by a factor of 1.7 while GTX 8800 (compute
g o0 = GTX 280 capability 1.0) drops by a factor of 8.
@ - GTX 8600
m  4p
2
E 20

0 2 4 6 B 10 12 14 18
Offset © 2009 NVIDIA CORPORATION @ NVIDIA.




Example of Strided Accesses

tride=2
__kernel void strideCopy(___global float* odata, stride

__global float* idata,
int stride)
{
int xid = get_global_id(0) * stride;
odata[xid] = idata[xid];
}

GPU conrerence

Copy with Stride
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Large strides often arise in
80 applications. However, strides
= GTX 280 can be avoided using local memory.
= GTX 8800

iy
o]

Effective Bandwidth (BG/s)
o
o
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e
]

Graceful scaling in GTX280

]

0D 2 4 6 B 10 12 14 16 18
Stride
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Local Memory

» Latency ~100x smaller than global memory

* Threads can cooperate through local memory
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« Cache data to reduce global memory access

» Use local memory to avoid non-coalesced global
memory access

& 2009 NVIDIA CORPORATION < NVIDIA.



GPU conrerence

A

Caching Example:
Matrix Multiplicatio

B N

I |-

{
}

Every thread corresponds to one entry in C.

N
C=AxB

kernel void simpleMultiply(__global float* a,
__global float* b,
__global float* c,

int N)

int row = get_global_id(1);
int col =get _global id(0);
float sum = 0.0f;
for (inti=0;i<TILE_DIM; i++) {
sum += a[row*TILE_DIM+i] * b[i*N+col];
}

c[row*N+col] = sum,;

© 2009 NVIDIA CORPORATION @ nul DIA.



Memory Access Pattern of a Half-Warp
B N

-

GPU conrerence

C

16

Each iteration, threads access the same element in A.
Un-coalesced in CC <=1.1.
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Matrix Multiplication (cont.)

Optimization NVIDIA GeForce NVIDIA GeForce
GTX 280 GTX 8300

No optimization
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memory to store a tile

of A 14.3 GBps 8.2 GBps

Using local memory to
eliminate redundant
reads of a tile of B
29.7 GBps 15.7 GBps
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Matrix Multiplication (cont.)

__kernel void coalescedMultiply(__global float* a,
__global float* b,
__global float* c,
int N,
__local float aTile[TILE_DIM][TILE_DIM])

int row = get_global_id(1);

int col = get_global_id(0);

float sum = 0.0f;

int x = get_local_id(0);

inty = get_local_id(1);

5y _ aTile[y][x] = a[row*TILE_DIM+x];

== for (inti = 0; i < TILE_DIM; i++) {

sum += aTile[y][i]* b[i*N+col];

}

c[row*N+col] = sum;

GPU conrerence
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Matrix Multiplication (cont.)

Optimization NVIDIA GeForce NVIDIA GeForce
GTX 280 GTX 8800
No optimization
8.8 GBps 0.7 GBps

Coalesced using local

memory to store a tile

of A

Using local memory to
eliminate redundant
reads of a tile of B

29.7 GBps

15.7 GBps

© 2009 NVIDIA CORPORATION

<A NVIDIA.



Coalescing Example:
Matrix Transpose

A B

Strided global mem access in
naive implementation, resulting
In 16 transactions if stride > 16
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tile

% Move the strided access into
‘ local memory read
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Matrix Transpose Performance

Optimization NVIDIA GeForce NVIDIA GeForce
GTX 280 GTX 8800

No optimization
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1.1 GBps 0.5 GBps
Using local memory to
coalesce global reads

24.8 GBps 13.2 GBps
Removing bank
conflicts 30.3 GBps 15.6 GBps

© 2009 NVIDIA CORPORATION @ nvl DIA.




GPU conFerence

Bank Conflicts

Local memory

A 2" order effect

Local memory is divide into banks.

— Successive 32-bit words assigned to
successive banks

— Number of banks = 16 for CC 1.x (32 in Fermi)

R/W different banks can be performed
simultaneously.

Bank conflict: two R/W fall in the same
bank, the access will be serialized.

o
o
o

© 2009 NVIDIA CORPORATION @ nul DIA.

Thus, accessing should be desighed to
avoid bank conflict
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Work-group Heuristics for Single
Kernel

« # of work-groups > # of SM

— Each SM has at least one work-group to execute

« # of work-groups / # of SM > 2

— Multi work-groups can run concurrently on a SM
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— Work on another work-group if one work-group is waiting on barrier

« # of work-groups / # of SM > 100 to scale well to
future device
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Work-item Heuristics

* The number of work-items per work-group should be a
multiple of 32 (warp size)

« Want as many warps running as possible to hide latencies
 Minimum: 64
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 Larger, e.g. 256 may be better
* Depends on the problem, do experiments!
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Occupancy

* Hide latency: thread instructions are issued sequentially.
So executing other warps when one warp is paused is the
only way to hide latencies and keep the hardware busy
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« Occupancy: ratio of active warps per SM to the maximum
number of allowed warps

— Maximum allowed warps: 32 in Tesla (48 in Fermi).
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Latency Hiding Calculation

 Arithmetic instruction 4 cycles, global memory 400-800 cycles
(assume 400 in this slide)

* 400/4 = 100 arithmetic instructions to hide the latency.
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« For example, assume the code has 8 arithmetic instructions for

every one global memory access. Thus 100/8~13 warps would be

enough to hide the latency. This corresponds to 40% occupancy in
Tesla.

 Larger than 40%, won’t lead to performance gain.

& 2009 NVIDIA CORPORATION < NVIDIA.



Register Dependency Latency Hiding

* If an instruction uses a result stored in a register written
by an instruction before it, this is ~ 24 cycles latency

* 50, we need 24/4=6 warps to hide register dependency
latency. This corresponds to 19% occupancy in Tesla
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Occupancy Considerations

* Increase occupancy to achieve latency hiding

» After some point (e.g. 50%), further increase in occupancy
won’t lead to performance increase

GPU conrerence

-~ * Occupancy is limited by resource usage:
= — Registers
— Local memory

— Scheduling hardware
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Estimating Occupancy Calculation

» Occupancy depends on both resource usage and execution
configuration

« Assume the only resource limitation is register.

* |If every thread uses 16 registers and every work-group
has 512 work-items, then 2 work-groups use 512*16*2 <=
16384. A 100% occupancy can be achieved.

* However, if every thread uses 17 registers, since 512*17*2
> 16384, only 1 work-group is allowed. So occupancy is
reduced to 50%!

 But, if work-group has 256 work-items, since 256*17*3
< 16384, occupancy can be 75%. S — <ANVIDIA.
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Other Resource Limitations on
Occupancy

« Maximum number of warps (32 in Tesla and 48 in Fermi)
* Maximum number of work-groups per SM (8 in Tesla and Fermi)

* S0 occupancy calculation in realistic case is complicated, thus...
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Instruction Throughput

* Throughput: # of instructions per cycle, or 1/# of cycles per
instruction

* In SIMT architecture,
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SM Throughtput = Operations per cycle/WarpSize
Instruction Cycles = WarpSize/Operations per cycle

* Maximizing throughput: using smaller number of cycles
to get the job done
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Arithmetic Instruction

 Int add, shift, min, max: 4 cycles (Tesla), 2 cycles (Fermi)
* Int mul: 16 cycles (Tesla), 2 cycles (Fermi)
* FP32 add, mul, mad, min, max: 4 cycles (Tesla), 2 cycles (Fermi)

GPU conrerence

* FP64 add, mul, mad: 32 cycles (Tesla), 2 cycles (Fermi)

* Int divide and modulo are expensive
- — Divide by 2"n, use “>> n”
— Modulo 2”n, use “& (2"n - 1)”

» Avoid automatic conversion of double to float
— Adding “f” to floating literals (e.g. 1.0f) because the default is double

& 2009 NVIDIA CORPORATION < NVIDIA.



Math Functions

There are two types of runtime math libraries

Native_function() map directly to the hardware level: faster but
lower accuracy

— See appendix B of the programming guide for a list of maximum ulp for math functions

Function(): slower but higher accuracy

— Afew to 10x more cycles, depending on whether the argument needs to be reduced

GPU conrerence

Use native math library whenever speed is more important
than precision
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Memory Instructions

» Use local memory to reduce global memory access

 Increase algorithm’s arithmetic intensity (the ratio of
arithmetic to global memory access instructions). The
higher of this ratio, the fewer of warps are required to
hide global memory latency.
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Control Flow

« If branching happens within a warp, different execution
paths must be serialized, increasing the total number of
instructions.

GPU conrerence

* No penalty if different warps diverge

— E.g. no divergence in the case of
if (local_id/warp_size > 2)

else

© 2009 NVIDIA CORPORATION @ nvl DIA.




Scalar Architecture and Compiler

 NVIDIA GPUs have a scalar architecture

— Use vector types in OpenCL for convenience, not performance

— Generally want more work-items rather than large vectors per work-item

« Use the -cl-mad-enable compiler option

— Permits use of FMADs, which can lead to large performance gains
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* Investigate using the -cl-fast-relaxed-math compiler option

— enables many aggressive compiler optimizations

© 2009 NVIDIA CORPORATION @ nul DIA.




NVIDIA OpenCL Visual Profiler

 Profiling of kernel execution time, device<->host data transfer ,
calling numbers.

* Global memory bandwidth and instruction issue rate
 Number of coalesced ld/st
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« Graph tools for visualizing the profiling data
« Occupancy analysis
« Export to CSV
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Summary

* OpenCL programs run on GPU can achieve great performance if
one can
— Maximize parallel execution

— Maximize memory bandwidth

GPU conrerence

— Maximize instruction throughput

Thank you and enjoy OpenCL!
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