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Overall Optimization Strategies
• Maximize parallel execution

– Exposing data parallelism in algorithms

– Choosing execution configuration

– Overlap memory transfer with computation

• Maximize memory bandwidth

– Avoid starving the GPU

• Maximize instruction throughput

– Get the job done with as few clock cycles as possible

• Profiling your code before doing optimization 

– NVIDIA OpenCL visual profiler

We will talk about how to do those in NVIDIA GPUs.

Very similar to CUDA C.
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Tesla Compute Architecture (GT200)

• GPU contains 30 Streaming Multiprocessors (SM)

• Each Multiprocessor contains

– 8 Scalar Processors (SP)

• IEEE 754 32-bit floating point

• 32-bit and 64-bit integer

– 1 Multithreaded Instruction Unit

• Up to 1024 concurrent threads

– 1 Double Precision Unit: IEEE 754 64-bit floating point

– 2 Special Function Units (SFU)

– 16 KB shared memory

– 16K 32-bit registers
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Fermi Compute Architecture

• 16 Multiprocessors

• Each Multiprocessor contains:

– 32 Cores

• 32 FP32 ops/clock

• 16 FP54 ops/clock

– 2 Warp Scheduler

• Up to 1536 threads concurrently

– Up to 48 KB shared memory

– Up to 48 KB L1 cache 

– 4 SFUs

– 32K 32-bit registers Uniform Cache
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Execution Model
OpenCL GPU

Work-item/thread

Scalar 

Processor

Work-group
Multiprocessor

...

Grid Device

Work-item are executed by scalar processors

Work-groups are executed on multiprocessors

Work-groups do not migrate

Several concurrent work-groups can reside on 

one SM- limited by SM resources

A kernel is launched as a grid of work-groups

In GT200, only one kernel can execute on a 

device at one time (Up to 16 in Fermi)



Warp and SIMT

• Work-groups divided into groups of 32 threads 

called warps.

• Warps always perform same instruction (SIMT)

• Warps are basic scheduling units (Fermi schedules 

2 warps at the same time)

• 4 clock cycles to dispatch an instruction to

all the threads in a warp (2 in Fermi)

• A lot of warps can hide memory latency
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OpenCL Memory Hierarchy

• Global: R/W per-kernel

• Constant : R per-kernel

• Local memory: R/W per-group

• Private: R/W per-thread
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Mapping OpenCL to the CUDA 
Architecture
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Overview of Memory Optimization

• Minimize host<->device data transfer

• Coalesce global memory access

• Use local memory as a cache



Minimizing host-device data transfer

• Host<->device data transfer has much lower bandwidth 

than global memory access.

– 8 GB/s (PCI-e, x16 Gen2) vs 141 GB/s (GTX 280)

• Minimize transfer

– Intermediate data can be allocated, operated, de-allocated directly on GPU

– Sometimes it’s even better to recompute on GPU

– Move CPU codes to GPU that do not have performance gains if it can reduce data transfer

• Group transfer

– One large transfer much better than many small ones: latency ~ 10 microsec, thus for data 

size < 4KB, transfer time is dominated by latency



Coalescing

• Global memory latency: 400-800 cycles.

The single most important performance consideration!

• Global memory access by threads of a half warp (16) can be 

coalesced to one transaction for word of size 8-bit, 16-bit, 32-

bit, 64-bit or two transactions for 128-bit. (On Fermi, coalescing 

is for warp)



Compute Capability

• First generation CUDA architecture (G80) has compute capability 

1.0, 1.1, e.g. GTX 8800, Tesla 870,

• Second generation CUDA architecture (GT200) has compute 

capability 1.3, e.g. GTX 280, Tesla C1060

• A full list of compute capability of various cards can be found at 

appendix A.1 of the OpenCL programming guide

• Target compute capability 1.0 with optional optimizations for 

higher compute capabilities (unless you know exactly the GPU 

your kernels will run on)



Segments

• Global memory can be viewed as composing aligned segments of 

16 and 32 words.

E.g. 32-bit word:



Coalescing in Compute Capability 1.0 
and 1.1
• K-th thread in a half warp must access the k-th word in 

a segment; however, not all threads need to participate

Out of sequence – 16 transactions

Misaligned – 16 transactions

……

……

……

Coalesces – 1 transaction



Coalescing in Compute Capability 
>= 1.2
• Coalescing for any pattern of access that fits into a segment size

• # of transactions = # of accessed segments



Coalescing in Compute Capability 
>= 1.2

1 transaction - 64B segment

2 transactions - 64B and 32B segments 

1 transaction - 128B segment



Example of Misaligned Accesses
__kernel void offsetCopy(__global float *odata,

__global float* idata,

int offset)

{

int xid = get_global_id(0) + offset;

odata[xid] = idata[xid];

}

offset=1

GTX280 (compute capability 1.3) drops

by a factor of 1.7 while GTX 8800 (compute

capability 1.0) drops by a factor of 8.



Example of Strided Accesses

__kernel void strideCopy(__global float* odata,

__global float* idata,

int stride)

{

int xid = get_global_id(0) * stride;

odata[xid] = idata[xid];

}

stride=2

Large strides often arise in 

applications. However, strides

can be avoided using local memory.

Graceful scaling in GTX280



Local Memory

• Latency ~100x smaller than global memory

• Threads can cooperate through local memory

• Cache data to reduce global memory access

• Use local memory to avoid non-coalesced global 

memory access



Caching Example: 
Matrix Multiplication

__kernel void simpleMultiply(__global float* a,

__global float* b,

__global float* c, 

int N)

{

int row = get_global_id(1);

int col = get_global_id(0);

float sum = 0.0f;

for (int i = 0; i < TILE_DIM; i++) {

sum += a[row*TILE_DIM+i] * b[i*N+col];

}

c[row*N+col] = sum;

}

C=AxB

Every thread corresponds to one entry in C.



Memory Access Pattern of a Half-Warp

Each iteration, threads access the same element in A. 

Un-coalesced in CC <= 1.1.



Matrix Multiplication (cont.)
Optimization NVIDIA GeForce

GTX 280

NVIDIA GeForce 

GTX 8800

No optimization
8.8 GBps 0.7 GBps

Coalesced using local 

memory to store a tile 

of  A 14.3 GBps 8.2 GBps

Using local memory to 

eliminate redundant 

reads of  a tile of  B
29.7 GBps 15.7 GBps



Matrix Multiplication (cont.)

__kernel void coalescedMultiply(__global float* a,

__global float* b,

__global float* c,

int N,

__local float aTile[TILE_DIM][TILE_DIM])

{

int row = get_global_id(1);

int col = get_global_id(0);

float sum = 0.0f;

int x = get_local_id(0);

int y = get_local_id(1);

aTile[y][x] = a[row*TILE_DIM+x];

for (int i = 0; i < TILE_DIM; i++) {

sum += aTile[y][i]* b[i*N+col];

}

c[row*N+col] = sum;

}



Matrix Multiplication (cont.)
Optimization NVIDIA GeForce

GTX 280

NVIDIA GeForce 

GTX 8800

No optimization
8.8 GBps 0.7 GBps

Coalesced using local

memory to store a tile 

of  A 14.3 GBps 8.2 GBps

Using local memory to 

eliminate redundant 

reads of  a tile of  B
29.7 GBps 15.7 GBps



Coalescing Example: 
Matrix Transpose

tile

Move the strided access into

local memory read

Strided global mem access in 

naïve implementation, resulting 

in 16 transactions if stride > 16

BA

A B



Matrix Transpose Performance

Optimization NVIDIA GeForce 

GTX 280

NVIDIA GeForce 

GTX 8800

No optimization
1.1 GBps 0.5 GBps

Using local memory to 

coalesce global reads

24.8 GBps 13.2 GBps

Removing bank 

conflicts 30.3 GBps 15.6 GBps



Bank Conflicts

• A 2nd order effect

• Local memory is divide into banks.

– Successive 32-bit words assigned to 

successive banks

– Number of banks = 16 for CC 1.x (32 in Fermi)

• R/W different banks can be performed 

simultaneously.

• Bank conflict: two R/W fall in the same 

bank,  the access will be serialized.

• Thus, accessing should be designed to 

avoid bank conflict

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Local memory
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Work-group Heuristics for Single 
Kernel
• # of work-groups > # of SM

– Each SM has at least one work-group to execute

• # of work-groups / # of SM > 2

– Multi work-groups can run concurrently on a SM

– Work on another work-group if one work-group is waiting on barrier

• # of work-groups / # of SM > 100 to scale well to 

future device



Work-item Heuristics 

• The number of work-items per work-group should be a 

multiple of 32 (warp size)

• Want as many warps running as possible to hide latencies

• Minimum: 64

• Larger, e.g. 256 may be better

• Depends on the problem, do experiments!



Occupancy

• Hide latency: thread instructions are issued sequentially. 

So executing other warps when one warp is paused is the 

only way to hide latencies and keep the hardware busy

• Occupancy: ratio of active warps per SM to the maximum 

number of allowed warps

– Maximum allowed warps: 32 in Tesla (48 in Fermi).



Latency Hiding Calculation

• Arithmetic instruction 4 cycles, global memory 400-800 cycles 

(assume 400 in this slide)

• 400/4 = 100 arithmetic instructions to hide the latency. 

• For example, assume the code has 8 arithmetic instructions for 

every one global memory access. Thus 100/8~13 warps would be 

enough to hide the latency. This corresponds to 40% occupancy in 

Tesla.

• Larger than 40%, won’t lead to performance gain.



Register Dependency Latency Hiding 

• If an instruction uses a result stored in a register written 

by an instruction before it, this is ~ 24 cycles latency

• So, we need 24/4=6 warps to hide register dependency 

latency. This corresponds to 19% occupancy in Tesla



Occupancy Considerations

• Increase occupancy to achieve latency hiding

• After some point (e.g. 50%), further increase in occupancy 

won’t lead to performance increase

• Occupancy is limited by resource usage: 

– Registers

– Local memory

– Scheduling hardware



Estimating Occupancy Calculation

• Occupancy depends on both resource usage and execution 

configuration

• Assume the only resource limitation is register.

• If every thread uses 16 registers and every work-group 

has 512 work-items, then 2 work-groups use 512*16*2 <= 

16384. A 100% occupancy can be achieved. 

• However, if every thread uses 17 registers, since 512*17*2 

> 16384, only 1 work-group is allowed. So occupancy is

reduced to 50%!

• But, if work-group has 256 work-items, since 256*17*3 

< 16384, occupancy can be 75%.



Other Resource Limitations on 
Occupancy
• Maximum number of warps (32 in Tesla and 48 in Fermi)

• Maximum number of work-groups per SM (8 in Tesla and Fermi)

• So occupancy calculation in realistic case is complicated, thus…



Occupancy Calculator

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
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Instruction Throughput

• Throughput: # of instructions per cycle, or 1/# of cycles per 

instruction

• In SIMT architecture, 

SM Throughtput = Operations per cycle/WarpSize

Instruction Cycles = WarpSize/Operations per cycle

• Maximizing throughput: using smaller number of cycles 

to get the job done



Arithmetic Instruction

• Int add, shift, min, max: 4 cycles (Tesla), 2 cycles (Fermi)

• Int mul: 16 cycles (Tesla), 2 cycles (Fermi)

• FP32 add, mul, mad, min, max: 4 cycles (Tesla), 2 cycles (Fermi)

• FP64 add, mul, mad: 32 cycles (Tesla), 2 cycles (Fermi)

• Int divide and modulo are expensive

– Divide by 2^n, use “>> n”

– Modulo 2^n, use “& (2^n – 1)”

• Avoid automatic conversion of double to float

– Adding “f” to floating literals (e.g. 1.0f) because the default is double



Math Functions

• There are two types of runtime math libraries

• Native_function() map directly to the hardware level: faster but 

lower accuracy

– See appendix B of the programming guide for a list of maximum ulp for math functions

• Function(): slower but higher accuracy

– A few to 10x more cycles, depending on whether the argument needs to be reduced

• Use native math library whenever speed is more important 

than precision



Memory Instructions

• Use local memory to reduce global memory access

• Increase algorithm’s arithmetic intensity (the ratio of 

arithmetic to global memory access instructions). The 

higher of this ratio, the fewer of warps are required to 

hide global memory latency.



Control Flow

• If branching happens within a warp, different execution 

paths must be serialized, increasing the total number of 

instructions.

• No penalty if different warps diverge

– E.g. no divergence in the case of 

if (local_id/warp_size > 2)

…

else

…



Scalar Architecture and Compiler

• NVIDIA GPUs have a scalar architecture

– Use vector types in OpenCL for convenience, not performance

– Generally want more work-items rather than large vectors per work-item

• Use the -cl-mad-enable compiler option

– Permits use of FMADs, which can lead to large performance gains

• Investigate using the -cl-fast-relaxed-math compiler option

– enables many aggressive compiler optimizations



NVIDIA OpenCL Visual Profiler

• Profiling of kernel execution time, device<->host data transfer , 

calling numbers. 

• Global memory bandwidth and instruction issue rate

• Number of coalesced ld/st

• Graph tools for visualizing the profiling data

• Occupancy analysis

• Export to CSV 





Summary

• OpenCL programs run on GPU can achieve great performance if 

one can

– Maximize parallel execution

– Maximize memory bandwidth

– Maximize instruction throughput

Thank you and enjoy OpenCL!


