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Abstract-This paper revisits classical Lucas-Kanade (LK) and Horn-Schunck (HS) optical flow techniques. The aim is to provide a 
baseline for other researchers on these two timeless techniques. The formulations presented incorporate modern practices, namely 
multichannel, multi-resolution with refinement procedure (warping), non-quadratic penalisers and non-linear formulation of the 
brightness assumption. The experiments conducted demonstrate the performance enhancement that can be assigned to each modern 
practice. Thereby, the performance of the LK and HS is renewed in order to enable a fair comparison to other state-of-art 
techniques. 
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I. INTRODUCTION 

The good performance of today’s optical flow formulations is possible due to several modern practices, namely multi-
resolution (coarse-to-fine) refinement that deals with large displacements, iterative methods based on warping interpolations, 
multi-channels, robustification of each channel (non- quadratic penalisers), gradient constancy assumption to handle small 
variation of the brightness value, and photometric colour spaces. Usually, the performance of state-of-art techniques is 
compared to the classical Lucas-Kanade (LK) and Horn-Schunck (HS) presented by Barron et al. (1994) [2]. We consider these 
comparisons unfair because the LK and HS do not contemplate the most important modern practices (such as, multi-resolution 
with refinement, nonlinear formulation of the brightness constancy assumption). Therefore, the full potential of both 
techniques is not considered.  For that reason, this article intends to provide a modern formulation of the LK and HS that 
incorporates multi-channel, multi-resolution with refinement (iterative procedure based on warping) and nonlinear brightness 
assumption. In addition, non-quadratic penaliser based on the Charbonnier error function is considered for the neighbourhood 
weighting of the LK. 

Thereby, the contributions of this paper include: 

 Modern and coloured formulation of the LK and HS 

 Extensive qualitative and quantitative evaluation  

 Baseline performance analysis for other research 

The experimental analysis includes comparisons of both non-hierarchical and hierarchical pyramidal architectures. The 
contribution of the iterative refinement and multi-channel approach is also studied. Finally, the neighbourhood weights of the 
LK are iteratively defined using the non-quadratic penaliser. When implemented with appropriate and modern practices, 
classical optical flow formulations such as Lucas- Kanade [9] and Horn-Schunck [10] can achieve respectable optical flow 
estimations. 

The article is organised as follows. Section II presents the major concepts beyond the optical flow formulation. Section III 
and Section IV present the multi-channel and multi-resolution LK and HS formulations, respectively. Section VI presents a 
comparative study between several versions of LK and HS. Finally, Section VII presents the most important conclusions. 

II. CONCEPTS OF THE OPTICAL FLOW 

Differential methods use several assumptions, such as brightness constancy and temporal consistence. These assumptions 
lead to a well-known motion constraint (approximated by the first order of Taylor’s expansion). 

.்ܫ∇  ࢜ + ௧ܫ = 	0 (1) 

where ࢜ = ,ݑ)  is  the  optical  flow  (horizontal and vertical velocities), ∇I  = (Ix , Iy )T is the spatial intensity gradient ்(ݒ
and It denotes the temporal derivative at time t. The motion constraint is an ill-state problem because there is one equation 
for two unknowns. Therefore, the measurements are under-constrained and a unique solution cannot be obtained for each 
position. This inability to measure the motion is known as t h e  aperture problem. In some situations, it is only possible 
to infer about the velocity component in the same direction of the spatial gradient. Therefore, additional constraints are 
required in order to obtain a well-stated problem. There are several techniques that resort to different assumptions, namely, the 
neighbour concept that is used to estimate the optical flow. For many years, differential optical flow techniques were classified 
as local [9] and global [10]. More recent approaches combine both concepts using energy functionals [6], [12].  
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Coloured versions of LK and HS are reformulated in this article, see Sections III and IV. Furthermore, a coloured image 
I (x) = (I1 (x), I2 (x), I3 (x)) is represented by their channels, where Ii (x) denotes a single channel and 	ܠ	 =	 (x, y, t). 

III. COLOUR VERSION OF THE LUCAS-KANADE 

The Spatial coherence assumption is generally used by local techniques. This assumption means that neighbour pixels 
move coherently and share the same flow. For instance, surrounding pixels belonging to the same surface are likely to move 
together [4], [3]. These neighbours introduce additional constraints, thus making the problem well-stated and over constrained.  

By combining several motion constraints using local neighbours for each position, the optical flow can be estimated by 
minimising the sum of constraints over the neighbourhood of size σ and, as a result, the system can be solved for each pixel 
position, ܠ, using a standard least-squares regression. The most used local technique, the Lucas-Kanade method [9], focuses on 
this principle; however, it was originally presented for brightness information. The local method used by this research is an 
extended and multichannel version of LK. It combines the three channels and consequently increases the gradient information 
that is used for the estimation. Thus, minimising the error in respect to the unknown optical flow variables, ݑ and ݒ: 

 ݉݅݊௨,௩	ܧ௅௄ = ∑ ఙܩ ∗ ݑ.(࢞)௜௫ܫൣ + ݒ.(࢞)௜௬ܫ + ௜௧(࢞)൧ଶଷ௜ୀଵܫ  (2) 

where Gσ denotes a Gaussian convolution kernel with deviation σ, which controls the contribution of the neighbours and 
defines the main contribution for the least-square computation. Iix, Iiy and Iit are spatial and temporal derivatives for a single 
channel, i ϵ {1, 2, 3}. Applying the weighted least-squares to Equation 2: 

 ቈ ∑ ௜௫ଶଷ௜ୀଵܫ௜ఙܩ ∑ ∑௜௬ଷ௜ୀଵܫ௜௫ܫ௜ఙܩ ௜௬ଷ௜ୀଵܫ௜௫ܫ௜ఙܩ ∑ ௜௬ଶଷ௜ୀଵܫ௜ఙܩ ቉ ቂݒݑቃ = − ቈ∑ ∑௜௧ଷ௜ୀଵܫ௜௫ܫ௜ఙܩ ௜௧ଷ௜ୀଵܫ௜௬ܫ௜ఙܩ ቉   (3) 

The solution exists when the system matrix is invertible. This happens when it has rank 2 since both eigenvalues are not 
zero and the system can be solved using Cramer’s rule. The size of the neighbourhood, σ, is the major concern of this 
technique because it cannot be enough to estimate the flow. Textureless image regions make the system matrix singular and a 
confidence measurement can be obtained based on the smallest eigenvalue [2]. 

IV. COLOUR VERSION OF THE HORN-SCHUNCK 

Unlike local methods, global approaches use a smoothness term to avoid singularities. This smoothness term allows the 
neighbourhood information to be propagated across uniform regions. 

The best known global technique is the Horn-Schunck [10] and it focuses on the minimisation of a quadratic error. The 
method has two terms, namely, the data-term that penalises the deviation from the motion constraint (Equation 1) and a 
smoothness term, also known as regularity term that penalises the deviation from the smoothness flow assumption. Recasting 
the HS, their data term is extended to a multichannel formulation by coupling all the channels [12]. A coloured version of the HS 
method can be reformulated as: 

ுௌܧ࢜݊݅݉  = ׬ ሾ∑ ଷ௜ୀଵ+࢜.(ݔ)௜ܫߘ ଶሿூ|࢜ߘ|ߣ ݀xdy (4) 

where ߣ  is the regularisation constant and |∇࢜| = ଶ|ݑ∇| + ଶ|ݒ∇| . This functional can be minimised by using the 
Euler-Lagrange equations with Neumann boundary conditions. 

ݑ෠௫ଶܫ  + ݒ෠௬ܫ෠௫ܫ + ෠௧ܫ෠௫ܫ − ݑ∆ߣ = 0 (5) 

ݑ෠௬ܫ෠௫ܫ  + ݒ෠௬ଶܫ + ෠௧ܫ෠௬ܫ − ݒ∆ߣ = 0    (6) 

where ∆ denotes the spatial Laplace operator that is numerically approximated by finite differences (a rectangular spacing 
grid hx  and hy  is used for x and y- directions) and the derivative according to j ϵ {x, y, t} is represented by I෠୨ = Iଵ୨ +Iଶ୨ + Iଷ୨. The filling-in effect is the major advantage of the HS because it allows the flow to propagate in locations that do 
not exhibit sufficient gradient information (|∇I | =0) [7]; however, the average caused by the smoothness-term blurs the flow 
at the motion boundary [3]. 

V. MODERN FORMULATIONS 

First-order approximation of Taylor’s expansion induces a linearisation of the motion constraint that is only valid for small 
optical flow values. Also, large optical flow displacements cause aliasing and multimodal energy functionals that may stop the 
minimisation process at local minimums [5]. 

Thus, the optical flow constraint is changed to a nonlinear formulation, I (x + w) − I (x) = 0, yielding the Equations 7 
and 8. A pyramidal structure of downsampled images can deal with large displacements. At each level, the current flow is 
used to warp the image at time (t + 1) towards the image at time t [3], [7]. The motion flow increments are obtained by 
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minimising the following energy functionals. 

 

 ݉݅݊ఋ࢝೗	E୐୏ = ఙܩ ∗ ሾ(࢒࢝+࢞)ܫ−  ሿଶ (7)(࢞)ܫ

 ݉݅݊ఋ࢝೗Eୌୗ = ׬ ሾ(࢒࢝+࢞)ܫ− ሿଶூ(࢞)ܫ ௟࢝)ߘ|ߣ+ +  (8) ݕ݀ݔ௟)|ଶ݀࢝ߜ

where ܟ୪ =	 ,௟ݑ) ,௟ݒ 1)்	denotes the flow estimation and δwl is the flow increment at pyramid level l ϵ {0, 1, ...}. The 
minimisation of the energy functionals, Equations 7 and 8, is conducted with regard to δwl . 

A low-pass Gaussian filter with standard   deviation ඥ2/4τ [12] is applied prior to downsampling the input images by a 
factor of τ ϵ (0, 1). After that, a bicubic interpolation and the flow estimation from the coarser level are used to warp the image. 

The temporal derivative is approximated by the first order of Taylor expansion, Equation 9, in order to remove the non-
linearity from the equations above. 

௧ܫ  = −(࢝+࢞)ܫ  (9) (࢞)ܫ

Therefore, 									ܫ௧,௟ାଵ ≅ −(࢒࢝+࢞)ܫ +(࢞)ܫ ௟ݑߜ௫,௟ܫ +  ௟ݒߜ௬,௟ܫ
 ∴ ௧,௟ାଵܫ	 = ௟ݑߜ௫,௟ܫ + ௟ݒߜ௬,௟ܫ +  ௧,௟ (10)ܫ

where Ix,l  and Iy,l are the spatial derivatives of I (x + wl ). This linearisation enables a proper minimisation of Equations 
7 and 8.  

Therefore, minimising Equation 7 is a straightforward process, while Equation 8 yields the Euler- Lagrange equations: 

௟ݑߜ෠௫,௟ܫ෠௫,௟ൣܫ  + ௟ݒߜ෠௬,௟ܫ + ෠௧,௟൧ܫ − ௟ାଵݑ∆ߣ = 0   (11) 

௟ݑߜ෠௫,௟ܫ෠௬,௟ൣܫ  + ௟ݒߜ෠௬,௟ܫ + ෠௧,௟൧ܫ − ௟ାଵݒ∆ߣ = 0 (12) 

where ul+1=ul + δul and vl+1 = vl + δvl . The optical flow is divided into two variables, namely, the flow of the 

coarser level and the unknown flow increment of the current pyramid level. At each level, the flow increment is small due 
to a multi-resolution approach and, therefore, the linearisation is valid.  

The optical flow estimation begins at the coarsest level and refines the solution by considering the current flow 
estimation to warp the input image before the next finer level. Thus, δwl is obtained between the partially registered images. 

Finally, the current flow estimation, wl , is updated at the end of each level. The minimisation scheme used in this article 

follows the classical HS [10]; however other minimisation schemes can be used, for instance, successively over relaxation. 
To discretise the Euler-Lagrange equations, the temporal derivative is approximated by a two-point stencil [−1, 1], the 
spatial flow derivatives are approximated by a second order stencil [−1, 0, 1] /2h and spatial image derivatives are 
approximated via a central finite difference by a fourth order approximation and using the stencil [1, −8, 0, 8, −1] /12h, 
where h is the grid size. 

For the LK method, Equation 7, instead of using a Gaussian convolution to define the contribution of each neighbour 
according to their distance to the current estimation position, it is possible to set the weights using a non-quadratic penaliser. 
This identifies the neighbours that violate the coherence assumption. This way, neighbours that do not have the same motion 
will have a lower weight and, therefore, their importance for the estimation is reduced. This increases the accuracy of the 
estimation ( see the experiments section). This paper considers the Charbonnier error function. 

VI. EXPERIMENTS 

The methods are implemented using similar schemes to enable a more reliable comparison between them. They are tested 
under test sequences [1] and considering the average angular error (AAE) [2] and average end-point error measurements (EPE) [1]. 
The modern implementations of the HS and LK use a median filter in current flow estimate and between the intermediate 
stages of the incremental optimisation architecture to increase the performance of the estimation.  

A bicubic interpolation is used by the warping process and the scaling parameter of the Charbonnier penaliser is set to 
0.001. A Gaussian convolution smoothing filter is applied to the image sequence in order to reduce the noise and to make the 
image infinitely many times differentiable [12]. 

The following optical flow versions are evaluated: 

 Single-colour  LK:  original [9],  multi-resolution (MR) and a multi-resolution with iterative refinement (MR+IR), 

DOI: 10.5963/JCEI0102001



Jou

sim

MR

to t

nam
con

A. 

can

est
it p
est

be 
sig
and

urnal of Comp

milar to the for

 Multi-colo
R+IR with we

 Single-col
the formulatio

 Multi-colo

Thus, this pa
mely the pyra
nducted consid

LK Modern F

Table I prese
n be accompli

As expected
imate large m
possible to in
imation is also

For single-ch
the techniqu

gnificantly enh
d Horn-Schu

(a

(e

puter Engineer

rmulation pre

our LK: mult
eights obtained

lour HS: origi
on presented i

our HS: multi

aper studies th
amidal structu
dering 100% 

Formulation 

TABLE I COMPARI

 WITH ITERATIVE

ents the exper
shed by an op

d, a pyramida
motion displace
ncorporate the
o increased, s

hannel formul
ue with the b
hance the perf
unck. 

a)  GT 

e)  GT 

ring and Infor

sented in Equ

ti-resolution w
d by a non- qu

inal [10], multi
in Equation 8,

-resolution wi

he impact of se
ure, the iterati
density. 

ISON BETWEEN TH

E REFINEMENT VER

THE AVERAGE

Seque

Dimetro

Grove

Grove

RubberW

Hydrag

Urban

Urban

riments condu
ptical flow tec

al structure su
ements and th
e non-linear m
ince small mo

lations, the hi
best results f
formance of t

 

 

rmatics 

uation 7, but c

with iterative
uadratic penal

-resolution (M
, but for a sin

ith the iterativ

everal modern
ve refinement

HE ORIGINAL LUKA

RSION (MR+IR). TH

E ANGULAR (◦) AN

ence O

don [1]: 21.2

e2 [1]: 28.84

e3 [1]: 32.74

Whale [1]: 18.52

gea [1]: 27.8

n2 [1]: 45.4

n3  [1]: 48.14

ucted for sever
hnique that re

ubstantially in
his factor refle
motion constr
otion incremen

ierarchical str
for all the se
the optical flo

(b) MR+IR 

(f) MR+IR 

- 26 - 

considering on

refinement (
liser; 

MR) and a mu
ngle channel -

ve refinement

n practices in 
nt and the mul

AS-KANADE [9], A M

HE PERFORMANCE

ND THE STANDARD

Original 

3 (21.26) 12.6

4 (21.20) 4.9

4 (31.50) 9.2

2 (21.74) 14.2

7 (24.81) 9.2

7 (41.04) 9.1

4 (43.20) 7.7

ral LK versio
esorts to a hier

ncreases the 
ects the overal
raint into the
nts are succes

ructure with t
equences, see
ow methods, e

 

 

 

ne channel - b

MR+IR), form

ulti-resolution 
- brightness; 

(MR+IR), for

the performan
lti-colour spac

MULTI-RESOLUTIO

E RESULTS OF THE

D DEVIATION (IN P

MR M

66 (19.05) 12.

95 (9.80) 4.

7 (17.98) 9.0

23 (21.54) 14.

7 (18.90) 9.1

9 (18.03) 9.0

4 (20.36) 7.0

ns. The aim i
rarchical struc

performance 
ll performance

e formulation 
sively estimat

the iterative r
e Table I. It
even the more

(c) Colour + MR

(g) Color + MR

                Apr

brightness; 

mulation pres

with iterative

rmulation pres

nce of the clas
ce. All the rep

ON (MR) AND A MU

SE VERSIONS ARE

PARENTHESES) 

MR+IR 

39 (18.73) 

81 (9.58) 

06 (18.21) 

15 (21.66) 

11 (19.56) 

04 (20.14) 

00 (18.84) 

s to demonstr
cture with itera

of the estima
e. The iterativ
of the metho

ted throughou

efinement me
was demons

e classical for

 

R+IR (

 

R+IR (

r. 2013, Vol. 1

sented in Equ

e refinement (

sented in Equa

ssical HS and
eported experi

MULTI-RESOLUTION

E REPORTED USING

rate the impro
ative refineme

ation. It mak
ve refinement 
od. The accur
ut the minimis

ethod (MR+IR
strated that m
rmulations lik

(d) Robust + Co

(h) Robust + Co

 Iss. 2, PP. 23

uation 7, and

(MR+IR), sim

ation 8. 

d LK formulat
iments have b

N 
G  

ovement gain 
ent.  

kes it possible
procedure ma
racy of the f
ation process.

R) has proved
modern pract
ke Lucas- Kan

olor + MR+IR 

olor + MR+IR 

3-29 

the 

milar 

tion, 
been 

that 

e to 
akes 
flow 
.  

d to 
ices 

nade 

DOI: 10.5963/JCEI0102001



Jou

Fig
cha
The

wit
As
pre
cha
ide
ass

usi
rob

app
hie
per

urnal of Comp

(i

. 1 M ulti-resolut
annel LK, t h e  t
e images are rep

THE NEI

OF

Table II depi
th MR+IR ve

can be seen
esent some res
annel LK ver
entify the neig
sumption by re

This is an im
ing the linear 
bustification.  

As it is poss
proaches use 
erarchical esti
rformance. 

TAB

W

puter Engineer

i)  GT 

tion with refinem
third is the mult
presented using H

magnitu

TABLE II RESULT

AND RESULTS

IGHBOURHOOD W

F THESE VERSION

icts the impro
ersion is com
n, the multi-c
sults for the s
rsion. Finally,
ghbours that 
educing their 

mportant assum
motion const

sible to confir
more inform

imation, itera

BLE III COMPARIS

WITH ITERATIVE RE

T

ring and Infor

 

ment LK formula
ti-channel LK an

HSV colour spac
ude of the optical

T OF THE MULTI-C
S OF THE MULTI-CH

WEIGHTS ARE OBTA

S ARE REPORTED U

Seq

Dimetr

Grov

Grov

RubberW

Hydra

Urba

Urba

ovement result
mpared to a m

hannel techni
single-channel
, the last LK
do not have 
associate wei

mption to form
traint. Figures

rm, the robus
mation to esti
ative refinem

SON BETWEEN TH

EFINEMENT VERS

THE AVERAGE AN

R

rmatics 

(j) MR+IR 

ation, under Midd
nd the fourth is th
e, where the hu
l flow. From top

CHANNEL AND MU

HANNEL AND MUL

AINED BY A NON-Q
USING THE AVERA

quence 

rodon [1]: 8.48

ve2 [1]: 4.0

ve3 [1]: 8.18

Whale [1]: 9.68

agea [1]: 6.87

an2  [1]: 7.78

an3  [1]: 5.53

ting from the 
more robust v

ique performs
l MR+IR LK

K technique u
similar motio
ght.  

mulate the LK
s 1(d), 1(h) an

stification inc
mate the opt

ment and a m

HE ORIGINAL HORN

SION (MR+IR). TH

NGULAR ERROR (º)

Sequence 

Dimetrodon [1]:

Grove2 [1]: 

Grove3 [1]: 

RubberWhale [1]:

Hydragea [1]: 

Urban2  [1]: 

Urban3  [1]: 

- 27 - 

 

(

dleburry test seq
the multi-channe
ue-channel measu

to bottom, the se

ULTI-RESOLUTION 

LTI-RESOLUTION W

QUADRATIC ERRO

AGE ANGULAR ERR

MR+IR 

AAE EPE

8 (14.95) 0.392

08 (8.26) 0.308

8 (16.39) 0.988

8 (18.74) 0.345

7 (18.46) 0.468

8 (17.39) 0.572

3 (16.64) 0.862

colour inform
version where
s better than 

K version, and
uses multi-col
on, for instan

K method and
nd 1(l) depict 

creases the pe
tical flow. Th
measurement

RN-SCHUNCK[10], A
HE PERFORMANC

) AND THE STAND

Original 

38.13 (20.30

25.77 (20.66

30.78 (30.00

 22.36 (20.47

31.10 (24.65

43.34 (37.29

51.51 (34.81

 

(k) Colour + MR

quences. The first
l with the weigh

ures the direction
equences are: Gro

WITH ITERATIVE R

WITH ITERATIVE R

OR FUNCTION (ROB

ROR (AAE) AND TH

Robust+M

E AAE 

2 7.49 (13.84)

8 3.78 (7.67)

8 7.69 (15.95)

5 9.05 (18.74)

8 6.54 (17.99)

2 7.04 (15.77)

2 5.25 (16.11)

mation. In this
e the weights

a single-chan
d figures 1(c),
lour with “ro
ce, it detects

d the quality o
the results of

erformance of
herefore, a m
of the coher

A MULTI-RESOLUT

E RESULTS OF TH

DARD DEVIATION 

MR 

0) 13.59 (17.3

6) 7.68 (10.11

0) 18.25 (27.3

7) 14.37 (20.0

5) 12.17 (21.14

9) 17.89 (26.2

1) 15.71 (24.7

                Apr

 

R+IR (

t column is the g
hting function ob
n of the flow ve
ove2, Grove3 and

REFINEMENT (MR+
REFINEMENT LK VE

BUST+MR+IR). THE

HE AVERAGE END

MR+IR 

EPE 

0.344 

0.275 

0.919 

0.318 

0.426 

0.431 

0.825 

s table, the pe
are defined 

nnel version. 
1(g) and 1(k

bustification”
the neighbou

of the flow is
f a multi-chan

f the optical fl
multi-channel 
rence assump

TION (MR) AND A

ESE VERSIONS AR

(IN PARENTHESES

3) 

1) 

3) 

9) 

4) 

5) 

8) 

r. 2013, Vol. 1

(l) Robust + Col

ground truth, the 
btained by a non
ector and the sat
d Urban3 

R+IR) LK VERSION 

ERSION WHERE  
E PERFORMANCE R

D-POINT ERROR (EP

erformance of
by a non-qu
 Figures 1(b

k) present res
”, which mak
urs that viola

s measured fo
nnel MR+IR 

flow estimatio
formulation 

ption achieve

A MULTI-RESOLUT

RE REPORTED USIN

S) 

 Iss. 2, PP. 23

lour + MR+IR

second is the si
n-quadratic penal
turation measures

 

RESULTS  
PE) 

f a multi-chan
adratic penali
b), 1(f) and
ults of the mu

kes it possible
ate the cohere

r each neighb
LK version w

on. Multi-chan
that combine

es a respecta

TION  
NG  

3-29 

ingle 
liser. 
s the 

nnel 
iser. 
1(j) 
ulti-
e to 
ence 

bour 
with 

nnel 
es a 
able 

DOI: 10.5963/JCEI0102001



Jou

C

Fig
ch

B. 

res

per

pre
cha

imp
low
IV

urnal of Comp

TABLE IV RESUL

CHANNEL AND MU

 

g. 2 M ulti-resolu
hannel HS and th
the flow vector 

HS Modern F

The perform
solution, multi

Table III pre
rhaps, the mos

Table IV co
esent some re
annel HS vers

The HS vers
pact on the o

wer than that a
. 

puter Engineer

LTS OF THE SINGLE

ULTI-RESOLUTION

US

(a)

(d)

(g)

ution with refinem
he third is the mu
and the saturatio

Formulation 

mance of four
i-resolution w

esents the perf
st important m

ompares the p
sults for the s

sion. 

sions present r
overall perform
achieved with

ring and Infor

E-CHANNEL AND 

N WITH ITERATIVE

SING THE AVERAG

Sequen

Dimetrod

Grove2

Grove3

RubberWh

Hydrage

Urban2

Urban3

)  GT 

)  GT 

)  GT 

ment HS formula
ulti-channel HS. T
on measures the m

r HS version
with iterative re

formance imp
modern practic

performance o
single-channe

results which 
mance of the 
h the LK vers

rmatics 

MULTI-RESOLUTI

E REFINEMENT (M

GE ANGULAR ERR

nce 
AA

on [1]: 13.67 (

2 [1]: 4.10 (
 [1]: 7.82 (

ale [1]: 14.27 (

a [1]: 8.74 (

  [1]: 6.72 (

  [1]: 13.57 (

 

 

 

ation, under Mid
The images are re
magnitude of the

ns are analyse
efinement, and

provement due
ce since the pe

of a single an
l MR+IR HS 

are similar to
technique. Th
ions; however

- 28 - 

ION WITH ITERAT

MR+IR+COLOUR)
ROR (AAE) AND TH

MR+IR 

AE EPE

(18.76) 0.595

(7.75) 0.307

(15.38) 0.920

(20.98) 0.492

(18.52) 0.468

(14.09) 0.398

(24.41) 0.910

(b) MR+IR 

(e) MR+IR 

(h) MR+IR 

ddleburry test seq
represented using
e optical flow. Fr

ed during thi
d multi-resolu

e to the pyram
erformance ga

nd multi-colo
 version, and 

o the ones pre
he performanc
r, colour play

 

TIVE REFINEMENT

HS.  THE PERFORM

HE AVERAGE END

MR+IR+

AAE 

10.02 (17.03)

3.90 (7.96)

7.29 (14.91)

10.70 (20.08)

6.72 (14.09)

5.57 (15.93)

12.98 (27.58)

 

 

 

quences. The firs
HSV colour spa

rom top to bottom

is section, na
ution and mult

midal-based H
ain is very sig

our MR+IR H
Figures 2(c),

esented by the
ce gain achie

ys an importan

                Apr

(MR+IR) HS VERS

MANCE RESULTS O

-POINT ERROR (EP

+Colour 

EPE 

 0.454 

0.290 

0.854 

 0.432 

0.495 

0.330 

 0.800 

(c) Colour

(f) Colour+

(i) Colour +

t column is the 
ce, where the hu

m, the sequences

amely, the or
ti-colour with 

HS formulation
gnificant. 

HS techniques
, 2(f) and 2(i)

e LK. The MR
ved due to co
nt role in estim

r. 2013, Vol. 1

SION AND RESULT

OF THESE VERSIO

PE) 

r+MR+IR 

r+MR+IR 

+ MR+IR 

ground truth, the
ue-channel measu
s are: Grove2, Gro

riginal formu
iterative refin

n. A pyramida

s. Figures 2(b
) presents resu

R+IR formula
olour informa
mating optica

 Iss. 2, PP. 23

TS OF THE MULTI-
ONS ARE REPORTE

 

 

 

e second is the sin
res the direction
ove3 and Urban3

lation [10], mu
nement. 

al formulation

b), 2(e) and 2
ults of the mu

ation has a str
ation seems to
al flow, see Ta

3-29 

-
ED 

ngle 
of 

3

ulti- 

n is, 

2(h) 
ulti-

rong 
o be 
able 

DOI: 10.5963/JCEI0102001



Journal of Computer Engineering and Informatics                    Apr. 2013, Vol. 1 Iss. 2, PP. 23-29 

- 29 - 

During the experiments conducted, the LK version performs generally better than the coloured version of HS, compare 
Figures 1(d), 1(h) and 1(l) with Figures 2(c), 2(f) and 2(i). However, in most cases the difference between both performances is 
too small.  

Finally, the median filter has a major impact on the optical flow estimation. All the results reported during this article were 
obtained by considering a median filter. This median filter was applied at the end of each intermediate stage of the MR and 
MR+IR process. The improvement achieved by the median filter is very large and, therefore, their use is highly recommended 
(instead, a bilateral filter can also be considered). 

VII. CONCLUSION 

The Lucas-Kanade and Horn-Schunck optical flow methods are revisited in this article. Modern practices are applied to 
each classical formulation, namely, hierarchical multi-resolution architecture, iterative refinement and multi-channel.  These 
modern practices intend to renew each method in order keep their performance updated. The aim is to enable a more 
reasonable and fair comparison to other state-of-art techniques. 

The non-linear motion constraint is considered in both formulations. The minimisation is conducted using the iterative 
refinement procedure in a multi-resolution structure, allowing small incremental motions to be estimated, which reflects a 
more accurate optical flow. Perhaps, the most important modern practice is the multi-resolution strategy because it can deal 
with large motion displacements. The results demonstrate their importance since the estimation performance was substantially 
improved. 

The multi-channel approach is also a significant advantage to estimate the optical flow. In addition, a robust penaliser 
based on Charbonnier error function was also integrated into a multi-resolution with iterative refinement and multi-channel 
LK formulation. The experiments proved that this LK version leads to a better performance comparatively to other versions. 
This result is expected since the non-quadratic penaliser turns the spatial coherence assumption more robust than neighbours 
that violate the assumption. 

Modern practices enhance the performance of classical HS and LK formulations, making them competitive comparatively 
to more modern optical flow techniques. Therefore, results of this article renew the performance of these two timeless optical 
flow techniques. 
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