Journal of Computer Engineering and Informatics Apr. 2013, Vol. 1 Iss. 2, PP. 23-29

Revisiting Lucas-Kanade and Horn-Schunck

Andry Maykol G. Pinto ', A. Paulo Moreira®, Paulo G. Costa’, Miguel V. Correia*

INESC TEC and Department of Electrical and Computer Engineering,
Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, Portugal

“landry.pinto@fe.up.pt; *amoreira@fe.up.pt; paco@fe.up.pt *“mcorreia@fe.up.pt

Abstract-This paper revisits classical Lucas-Kanade (LK) and Horn-Schunck (HS) optical flow techniques. The aim is to provide a
baseline for other researchers on these two timeless techniques. The formulations presented incorporate modern practices, namely
multichannel, multi-resolution with refinement procedure (warping), non-quadratic penalisers and non-linear formulation of the
brightness assumption. The experiments conducted demonstrate the performance enhancement that can be assigned to each modern
practice. Thereby, the performance of the LK and HS is renewed in order to enable a fair comparison to other state-of-art
techniques.
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[. INTRODUCTION

The good performance of today’s optical flow formulations is possible due to several modern practices, namely multi-
resolution (coarse-to-fine) refinement that deals with large displacements, iterative methods based on warping interpolations,
multi-channels, robustification of each channel (non- quadratic penalisers), gradient constancy assumption to handle small
variation of the brightness value, and photometric colour spaces. Usually, the performance of state-of-art techniques is
compared to the classical Lucas-Kanade (LK) and Horn-Schunck (HS) presented by Barron et al. (1994) . We consider these
comparisons unfair because the LK and HS do not contemplate the most important modern practices (such as, multi-resolution
with refinement, nonlinear formulation of the brightness constancy assumption). Therefore, the full potential of both
techniques is not considered. For that reason, this article intends to provide a modern formulation of the LK and HS that
incorporates multi-channel, multi-resolution with refinement (iterative procedure based on warping) and nonlinear brightness
assumption. In addition, non-quadratic penaliser based on the Charbonnier error function is considered for the neighbourhood
weighting of the LK.

Thereby, the contributions of this paper include:

e Modern and coloured formulation of the LK and HS
o Extensive qualitative and quantitative evaluation

« Baseline performance analysis for other research

The experimental analysis includes comparisons of both non-hierarchical and hierarchical pyramidal architectures. The
contribution of the iterative refinement and multi-channel approach is also studied. Finally, the neighbourhood weights of the
LK are iteratively defined using the non-quadratic penaliser. When implemented with appropriate and modern practices,
classical optical flow formulations such as Lucas- Kanade ") and Horn-Schunck """ can achieve respectable optical flow
estimations.

The article is organised as follows. Section II presents the major concepts beyond the optical flow formulation. Section III
and Section IV present the multi-channel and multi-resolution LK and HS formulations, respectively. Section VI presents a
comparative study between several versions of LK and HS. Finally, Section VII presents the most important conclusions.

II. CONCEPTS OF THE OPTICAL FLOW

Differential methods use several assumptions, such as brightness constancy and temporal consistence. These assumptions
lead to a well-known motion constraint (approximated by the first order of Taylor’s expansion).

VITv+1,=0 (1)

where v = (u,v)T is the optical flow (horizontal and vertical velocities), VI = (Ix , ly )T is the spatial intensity gradient
and It denotes the temporal derivative at time t. The motion constraint is an ill-state problem because there is one equation
for two unknowns. Therefore, the measurements are under-constrained and a unique solution cannot be obtained for each
position. This inability to measure the motion is known as the aperture problem. In some situations, it is only possible
to infer about the velocity component in the same direction of the spatial gradient. Therefore, additional constraints are
required in order to obtain a well-stated problem. There are several techniques that resort to different assumptions, namely, the
neighbour concept that is used to estimate the optical flow. For many years, differential optical flow techniques were classified
as local ' and global %!, More recent approaches combine both concepts using energy functionals '],
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Coloured versions of LK and HS are reformulated in this article, see Sections III and IV. Furthermore, a coloured image
I(X)= (I1 (), I2 (x), I3 (X)) is represented by their channels, where I (X) denotes a single channel and x = (x,y, t).

III. COLOUR VERSION OF THE LUCAS-KANADE

The Spatial coherence assumption is generally used by local techniques. This assumption means that neighbour pixels
move coherently and share the same flow. For instance, surrounding pixels belonging to the same surface are likely to move
together [ 1. These neighbours introduce additional constraints, thus making the problem well-stated and over constrained.

By combining several motion constraints using local neighbours for each position, the optical flow can be estimated by
minimising the sum of constraints over the neighbourhood of size ¢ and, as a result, the system can be solved for each pixel
position, X, using a standard least-squares regression. The most used local technique, the Lucas-Kanade method ), focuses on
this principle; however, it was originally presented for brightness information. The local method used by this research is an
extended and multichannel version of LK. It combines the three channels and consequently increases the gradient information
that is used for the estimation. Thus, minimising the error in respect to the unknown optical flow variables, u and v:

. 2
mlnu,v ELK = Z?:l GO‘ * [Iix(x)-u + Iiy(x)- v+ Iit(x)] (2)

where G, denotes a Gaussian convolution kernel with deviation o, which controls the contribution of the neighbours and
defines the main contribution for the least-square computation. I, Ii; and I;; are spatial and temporal derivatives for a single
channel, i € {1, 2, 3}. Applying the weighted least-squares to Equation 2:

1 Giglix” -1 Gialixliy] [u] _ Y1 Giolixlie
Y 1 Giolixliy i Gigliy,” |V 21Gigliy i

The solution exists when the system matrix is invertible. This happens when it has rank 2 since both eigenvalues are not
zero and the system can be solved using Cramer’s rule. The size of the neighbourhood, o, is the major concern of this
technique because it cannot be enough to estimate the flow. Textureless image regions make the system matrix singular and a
confidence measurement can be obtained based on the smallest eigenvalue .

A3)

IV.COLOUR VERSION OF THE HORN-SCHUNCK

Unlike local methods, global approaches use a smoothness term to avoid singularities. This smoothness term allows the
neighbourhood information to be propagated across uniform regions.

The best known global technique is the Horn-Schunck """ and it focuses on the minimisation of a quadratic error. The
method has two terms, namely, the data-term that penalises the deviation from the motion constraint (Equation 1) and a
smoothness term, also known as regularity term that penalises the deviation from the smoothness flow assumption. Recasting
the HS, their data term is extended to a multichannel formulation by coupling all the channels!'?. A coloured version of the HS
method can be reformulated as:

min,Eys = [, [X7-,VI;(x).v + A|Vv|?] dxdy 4)
where A is the regularisation constant and |V¥| = |Vu|? 4+ |Vv|?. This functional can be minimised by using the
Euler-Lagrange equations with Neumann boundary conditions.

L u+TLIv+ 10, —2Au=0 (5)
Lou+1,°v+1,1, —2Av =0 (6)

where A denotes the spatial Laplace operator that is numerically approximated by finite differences (a rectangular spacing
grid hx and hy is used for x and y- directions) and the derivative according to j € {x, y, t} is represented by Tj = I+
I;; + L35. The filling-in effect is the major advantage of the HS because it allows the flow to propagate in locations that do

not exhibit sufficient gradient information (|V1 | =0) "); however, the average caused by the smoothness-term blurs the flow
at the motion boundary .

V. MODERN FORMULATIONS

First-order approximation of Taylor’s expansion induces a linearisation of the motion constraint that is only valid for small
optical flow values. Also, large optical flow displacements cause aliasing and multimodal energy functionals that may stop the
minimisation process at local minimums ).

Thus, the optical flow constraint is changed to a nonlinear formulation, I (X + w) — I (X) = 0, yielding the Equations 7
and 8. A pyramidal structure of downsampled images can deal with large displacements. At each level, the current flow is
used to warp the image at time (t + 1) towards the image at time t ™"\ The motion flow increments are obtained by
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minimising the following energy functionals.

mingy, ELx = G * [I(x +w)) — I(x)]? (7

ming,, Eys = [, U(x+w) —I1(x)]*> +AV(w, + sw))|?dxdy (8)

where w; = (u;,v;, 1)T denotes the flow estimation and dw; is the flow increment at pyramid level | € {0, 1, ...}. The
minimisation of the energy functionals, Equations 7 and 8, is conducted with regard to dw .

A low-pass Gaussian filter with standard deviation /2 /4t "% is applied prior to downsampling the input images by a
factor of T € (0, 1). After that, a bicubic interpolation and the flow estimation from the coarser level are used to warp the image.

The temporal derivative is approximated by the first order of Taylor expansion, Equation 9, in order to remove the non-
linearity from the equations above.

I =I(x+w)—I(x) )
Therefore,
Iijvr =1(x+wp) —I(x) + 1., 6u, + 1,8V,
e = I 6w + 1,60, + 1 (10)

where Ix | and Iy | are the spatial derivatives of I (X +w]| ). This linearisation enables a proper minimisation of Equations
7 and 8.

Therefore, minimising Equation 7 is a straightforward process, while Equation 8 yields the Euler- Lagrange equations:

Tx,l [7x'l5ul -+ iy'l(Svl -+ ’I\t,l] - /1Aul+1 == O (11)
Ty,l [Tx,15ul -+ ’I\y‘l6vl -+ Tt,l] — lAvl_,_l =0 (12)

where u]+1=u|] + du|] and V|41 = V| + &V] . The optical flow is divided into two variables, namely, the flow of the

coarser level and the unknown flow increment of the current pyramid level. At each level, the flow increment is small due
to a multi-resolution approach and, therefore, the linearisation is valid.

The optical flow estimation begins at the coarsest level and refines the solution by considering the current flow
estimation to warp the input image before the next finer level. Thus, dw] is obtained between the partially registered images.
Finally, the current flow estimation, w| , is updated at the end of each level. The minimisation scheme used in this article
follows the classical HS "% however other minimisation schemes can be used, for instance, successively over relaxation.
To discretise the Euler-Lagrange equations, the temporal derivative is approximated by a two-point stencil [—1, 1], the
spatial flow derivatives are approximated by a second order stencil [—1, 0, 1] /2h and spatial image derivatives are
approximated via a central finite difference by a fourth order approximation and using the stencil [1, =8, 0, 8, —1] /12h,
where h is the grid size.

For the LK method, Equation 7, instead of using a Gaussian convolution to define the contribution of each neighbour
according to their distance to the current estimation position, it is possible to set the weights using a non-quadratic penaliser.
This identifies the neighbours that violate the coherence assumption. This way, neighbours that do not have the same motion
will have a lower weight and, therefore, their importance for the estimation is reduced. This increases the accuracy of the
estimation (see the experiments section). This paper considers the Charbonnier error function.

VI. EXPERIMENTS

The methods are implemented using similar schemes to enable a more reliable comparison between them. They are tested
under test sequences ! and considering the average angular error (AAE) ! and average end-point error measurements (EPE) "),
The modern implementations of the HS and LK use a median filter in current flow estimate and between the intermediate
stages of the incremental optimisation architecture to increase the performance of the estimation.

A bicubic interpolation is used by the warping process and the scaling parameter of the Charbonnier penaliser is set to
0.001. A Gaussian convolution smoothing filter is applied to the image sequence in order to reduce the noise and to make the
image infinitely many times differentiable '

The following optical flow versions are evaluated:

« Single-colour LK: original ¥}, multi-resolution (MR) and a multi-resolution with iterative refinement (MR+IR),
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similar to the formulation presented in Equation 7, but considering one channel - brightness;

e Multi-colour LK: multi-resolution with iterative refinement (MR+IR), formulation presented in Equation 7, and the
MR-+IR with weights obtained by a non- quadratic penaliser;

« Single-colour HS: original "', multi-resolution (MR) and a multi-resolution with iterative refinement (MR+IR), similar

to the formulation presented in Equation 8, but for a single channel - brightness;
o Multi-colour HS: multi-resolution with the iterative refinement (MR+IR), formulation presented in Equation 8.

Thus, this paper studies the impact of several modern practices in the performance of the classical HS and LK formulation,
namely the pyramidal structure, the iterative refinement and the multi-colour space. All the reported experiments have been
conducted considering 100% density.

A. LK Modern Formulation

TABLE I COMPARISON BETWEEN THE ORIGINAL LUKAS-KANADE ¥, A MULTI-RESOLUTION (MR) AND A MULTI-RESOLUTION
WITH ITERATIVE REFINEMENT VERSION (MR+IR). THE PERFORMANCE RESULTS OF THESE VERSIONS ARE REPORTED USING
THE AVERAGE ANGULAR (°) AND THE STANDARD DEVIATION (IN PARENTHESES)

Sequence Original MR MR-+IR
Dimetrodon ' 21.23 (21.26)  12.66 (19.05) 1239 (18.73)
Grove2 ' 28.84 (21.20)  4.95 (9.80) 481 (9.58)
Grove3 M 32.74 (31.50)  9.27 (17.98)  9.06 (18.21)
RubberWhale ' 18.52 (21.74)  14.23 (21.54)  14.15 (21.66)
Hydragea ™: 27.87 (24.81)  9.27 (18.90)  9.11 (19.56)
Urban2 4547 (41.04)  9.19 (18.03)  9.04 (20.14)
Urban3 M: 48.14 (43.20)  7.74 (20.36)  7.00 (18.84)

Table I presents the experiments conducted for several LK versions. The aim is to demonstrate the improvement gain that
can be accomplished by an optical flow technique that resorts to a hierarchical structure with iterative refinement.

As expected, a pyramidal structure substantially increases the performance of the estimation. It makes it possible to
estimate large motion displacements and this factor reflects the overall performance. The iterative refinement procedure makes
it possible to incorporate the non-linear motion constraint into the formulation of the method. The accuracy of the flow
estimation is also increased, since small motion increments are successively estimated throughout the minimisation process.

For single-channel formulations, the hierarchical structure with the iterative refinement method (MR-+IR) has proved to
be the technique with the best results for all the sequences, see Table 1. It was demonstrated that modern practices
significantly enhance the performance of the optical flow methods, even the more classical formulations like Lucas- Kanade

and Horn-Schunck.

("

[

(a) GT (b) MR+IR (c¢) Colour + MR-+IR (d) Robust + Color + MR-+IR
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(e) GT (f) MR+IR (g) Color + MR+IR (h) Robust + Color + MR-+IR
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(i) GT () MR+IR (k) Colour + MR-IR (1) Robust -+ Colour + MR-+IR

Fig. 1 Multi-resolution with refinement LK formulation, under Middleburry test sequences. The first column is the ground truth, the second is the single

channel LK, the third is the multi-channel LK and the fourth isthe multi-channel with the weighting function obtained by a non-quadratic penaliser.

The images are represented using HSV colour space, where the hue-channel measures the direction of the flow vector and the saturation measures the
magnitude of the optical flow. From top to bottom, the sequences are: Grove2, Grove3 and Urban3

TABLE Il RESULT OF THE MULTI-CHANNEL AND MULTI-RESOLUTION WITH ITERATIVE REFINEMENT (MR+IR) LK VERSION
AND RESULTS OF THE MULTI-CHANNEL AND MULTI-RESOLUTION WITH ITERATIVE REFINEMENT LK VIERSION WHERE
THE NEIGHBOURHOOD WEIGHTS ARE OBTAINED BY A NON-QUADRATIC ERROR FUNCTION (ROBUST+MR-+IR). THE PERFORMANCE RESULTS
OF THESE VERSIONS ARE REPORTED USING THE AVERAGE ANGULAR ERROR (AAE) AND THE AVERAGE END-POINT ERROR (EPE)

MR+IR Robust+MR+IR

Sequence
AAE EPE AAE EPE

Dimetrodon [1]: | 8.48 (14.95) 0392 | 7.49 (13.84) 0.344
Grove2 [1]: 4.08 (8.26) 0308 | 3.78 (7.67) 0.275
Grove3 [1]: 8.18 (16.39) 0.988 | 7.69 (15.95) 0.919
RubberWhale [1]: | 9.68 (18.74) 0.345 | 9.05 (18.74) 0.318
Hydragea [1]: | 6.87 (18.46) 0.468 | 6.54 (17.99) 0.426

Urban2 [1]: | 7.78 (17.39) 0.572 | 7.04 (15.77) 0.431

Urban3 [1]: | 5.53 (16.64) 0.862 | 5.25 (16.11) 0.825

Table II depicts the improvement resulting from the colour information. In this table, the performance of a multi-channel
with MR+IR version is compared to a more robust version where the weights are defined by a non-quadratic penaliser.
As can be seen, the multi-channel technique performs better than a single-channel version. Figures 1(b), 1(f) and 1(j)
present some results for the single-channel MR+IR LK version, and figures 1(c), 1(g) and 1(k) present results of the multi-
channel LK version. Finally, the last LK technique uses multi-colour with “robustification’, which makes it possible to
identify the neighbours that do not have similar motion, for instance, it detects the neighbours that violate the coherence
assumption by reducing their associate weight.

This is an important assumption to formulate the LK method and the quality of the flow is measured for each neighbour
using the linear motion constraint. Figures 1(d), 1(h) and 1(1) depict the results of a multi-channel MR+IR LK version with
robustification.

As it is possible to confirm, the robustification increases the performance of the optical flow estimation. Multi-channel
approaches use more information to estimate the optical flow. Therefore, a multi-channel formulation that combines a
hierarchical estimation, iterative refinement and a measurement of the coherence assumption achieves a respectable
performance.

TABLE III COMPARISON BETWEEN THE ORIGINAL HORN-SCHUNCK[IO], A MULTI-RESOLUTION (MR) AND A MULTI-RESOLUTION

WITH ITERATIVE REFINEMENT VERSION (MR+IR). THE PERFORMANCE RESULTS OF THESE VERSIONS ARE REPORTED USING
THE AVERAGE ANGULAR ERROR (°) AND THE STANDARD DEVIATION (IN PARENTHESESS)

Sequence Original MR
Dimetrodon ! 38.13 (20.30)  13.59 (17.33)
Grove2 M: 25.77 (20.66)  7.68 (10.11)
Grove3 [ 30.78 (30.00)  18.25 (27.33)
RubberWhale ':  22.36 (20.47)  14.37 (20.09)
Hydragea ™ 31.10 (24.65)  12.17 (21.14)
Urban2 4334 (37.29)  17.89 (26.25)
Urban3 M 51.51 (34.81)  15.71 (24.78)
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TABLE IV RESULTS OF THE SINGLE-CHANNEL AND MULTI-RESOLUTION WITH ITERATIVE REFINEMENT (MR+IR) HS VERSION AND RESULTS OF THE MULTI-
CHANNEL AND MULTI-RESOLUTION WITH ITERATIVE REFINEMENT (MR+IR+COLOUR) HS. THE PERFORMANCE RESULTS OF THESE VERSIONS ARE REPORTED
USING THE AVERAGE ANGULAR ERROR (AAE) AND THE AVERAGE END-POINT ERROR (EPE)

MR-+IR MR-+IR+Colour

Sequence
AAE EPE AAE EPE
Dimetrodon M: | 13.67 (18.76)  0.595 | 10.02 (17.03)  0.454
Grove2 M 4.10 (7.75) 0307 | 3.90 (7.96) 0.290
Grove3 ' 7.82 (1538) 0920 | 7.29 (14.91)  0.854
RubberWhale [1]:| 14.27 (20.98)  0.492 | 10.70 (20.08)  0.432
Hydragea ': 8.74 (18.52)  0.468 | 6.72 (14.09)  0.495
Urban2 M: 6.72 (14.09)  0.398 | 5.57 (15.93)  0.330
Urban3 ["; 13.57 (24.41) 0910 | 12.98 (27.58)  0.800

Lt I
(b) MR+IR

§

(d) GT (¢) MR+IR (f) Colour-+MR-+IR

o o o

(2) GT (h) MR-HIR (i) Colour + MR+IR

Fig. 2 M ulti-resolution with refinement HS formulation, under Middleburry test sequences. Thefirst column is the ground truth, the second is the single
channel HS and the third is the multi-channel HS. The images are represented using HSV colour space, where the hue-channel measures the direction of
the flow vector and the saturation measures the magnitude of the optical flow. From top to bottom, the sequences are: Grove2, Grove3 and Urban3

B. HS Modern Formulation

The performance of four HS versions are analysed during this section, namely, the original formulation "%, multi-
resolution, multi-resolution with iterative refinement, and multi-resolution and multi-colour with iterative refinement.

Table III presents the performance improvement due to the pyramidal-based HS formulation. A pyramidal formulation is,
perhaps, the most important modern practice since the performance gain is very significant.

Table IV compares the performance of a single and multi-colour MR+IR HS techniques. Figures 2(b), 2(e) and 2(h)
present some results for the single-channel MR+IR HS version, and Figures 2(c), 2(f) and 2(i) presents results of the multi-
channel HS version.

The HS versions present results which are similar to the ones presented by the LK. The MR+IR formulation has a strong
impact on the overall performance of the technique. The performance gain achieved due to colour information seems to be

lower than that achieved with the LK versions; however, colour plays an important role in estimating optical flow, see Table
Iv.
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During the experiments conducted, the LK version performs generally better than the coloured version of HS, compare
Figures 1(d), 1(h) and 1(1) with Figures 2(c), 2(f) and 2(i). However, in most cases the difference between both performances is
too small.

Finally, the median filter has a major impact on the optical flow estimation. All the results reported during this article were
obtained by considering a median filter. This median filter was applied at the end of each intermediate stage of the MR and
MR+IR process. The improvement achieved by the median filter is very large and, therefore, their use is highly recommended
(instead, a bilateral filter can also be considered).

VII. CONCLUSION

The Lucas-Kanade and Horn-Schunck optical flow methods are revisited in this article. Modern practices are applied to
each classical formulation, namely, hierarchical multi-resolution architecture, iterative refinement and multi-channel. These
modern practices intend to renew each method in order keep their performance updated. The aim is to enable a more
reasonable and fair comparison to other state-of-art techniques.

The non-linear motion constraint is considered in both formulations. The minimisation is conducted using the iterative
refinement procedure in a multi-resolution structure, allowing small incremental motions to be estimated, which reflects a
more accurate optical flow. Perhaps, the most important modern practice is the multi-resolution strategy because it can deal
with large motion displacements. The results demonstrate their importance since the estimation performance was substantially
improved.

The multi-channel approach is also a significant advantage to estimate the optical flow. In addition, a robust penaliser
based on Charbonnier error function was also integrated into a multi-resolution with iterative refinement and multi-channel
LK formulation. The experiments proved that this LK version leads to a better performance comparatively to other versions.
This result is expected since the non-quadratic penaliser turns the spatial coherence assumption more robust than neighbours
that violate the assumption.

Modern practices enhance the performance of classical HS and LK formulations, making them competitive comparatively
to more modern optical flow techniques. Therefore, results of this article renew the performance of these two timeless optical
flow techniques.
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